
www.manaraa.com

IMPLEMENTING COMPLIANCE
IN PROCESS-CENTERED

SOFTWARE ENGINEERING
ENVIRONMENTS

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

in t h e F a c u l t y o f S c i e n c e a n d E n g i n e e r i n g

July 2004

By
Wykeen Seet

Department of Computer Science

www.manaraa.com

ProQuest Number: 13843449

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13843449

Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

www.manaraa.com

/

IOHM RYL&Mte
JNtVERSU

« £ T '*i ^
I J C f l W ' l a

-v

www.manaraa.com

C ontents

A bstract 10

Declaration 11

Copyright 12

Acknowledgem ents 13

1 Introduction 14
1.1 Process M odeling ... 15

1.1.1 Software Engineering.. 15
1.1.2 Definitions... IT
1.1.3 The Nature of Process M o d ellin g .. 19
1.1.4 Process-Centered Software Engineering Environments . . . 20
1.1.5 Some Current P S E E s.. 21
1.1.6 Some Characteristics of P S E E s .. 22

1.2 Evolution (Softness) in Process M odelling... 22
1.2.1 Some Characteristics of E volution.. 23
1.2.2 Managing Evolution Complexity... 24
1.2.3 M eta-P rocess... 25
1.2.4 Hierarchical S tru c tu res ... 25

1.3 Formality (Hardness) in Process M o d e llin g 26
1.4 Hypothesis.. 27
1.5 Research M ethodology.. 29
1.6 Research Contributions.. 31
1.7 Thesis S tructure.. 32
1.8 S u m m a ry .. 34

2

www.manaraa.com

2 The Compliant System s Architecture(C SA) 35
2.1 In troduction .. 35
2.2 The Compliant Systems Architecture A p p ro a c h 36

2.2.1 Generic Compliance .. 38
2.2.2 Definition of Compliance in Other Research A rea s 40

2.3 Determining Com pliance.. 44
2.3.1 Additional Properties of C o m p lian ce 47

2.4 A Definition of Compliance for P S E E s ... 48
2.4.1 Policy requirements of a PSEE ... 48

2.5 Description of CSA Tools... 49
2.5.1 A renaO S.. 50
2.5.2 ProcessBase and P B A M ... 50
2.5.3 The HyperCode S y s te m ... 51

2.6 S u m m a ry ... 53

3 The 7T-SPACE Language 55
3.1 In troduction - 55
3.2 Overview... 56
3.3 tt-S P A C E ... 57

3.3.1 The 7r-calculus as used in 7T-SPACE...................................... 57
3.3.2 7T-SPACE ty p e s ... 59
3.3.3 Aggregates... 60
3.3.4 Operations on C h a n n e ls ... 63
3.3.5 Operations on the Aggregates ty p e ... 64

3.4 Support for Dynamic E v o lu tio n ... 65
3.5 Summary .. 67

4 Language Compliance 68
4.1 In troduction ... 68
4.2 Design of the enactable 7T-SPACE L a n g u a g e 69

4.2.1 Recursive Descent Compiling .. 69
4.2.2 Lexical Refinements... 70
4.2.3 Syntactic R efinem en ts ... 71
4.2.4 Semantic Refinements 78
4.2.5 Code G e n e ra tio n .. 81
4.2.6 Enaction I s s u e s .. . 83

3

www.manaraa.com

4.3 Language Compliance ... 85
4.3.1 Compliance in 7T-SPACE.. 85

4.4 Criteria for Language Com pliance.. 86
4.5 S u m m a ry .. 88

5 Virtual M achine Compliance 89
5.1 In troduction ... 89
5.2 VM Design Approaches... 89

5.2.1 A Definition of Virtual M achine... 89
5.2.2 Conventional V M s .. 91

5.3 Compliance in VM Construction... 94
5.3.1 Support for Compliance in the PBAM 94
5.3.2 Comparisons of PBAM with conventional VMs 96

5.4 Design of 7rPVM .. 96
5.4.1 A rchitecture... 97
5.4.2 Mechanisms to support Passive C o m p lian ce 97
5.4.3 Mechanisms to support Dynamic Compliance 108

5.5 Criteria for VM C om pliance...110
5.6 Model for determining VM Com pliance..I l l
5.7 S u m m a ry ...113

6 A pplication Com pliance 117
6.1 In troduction ..117
6.2 A 7T-SPACE HyperCode S y stem ...118

6.2.1 P re lim in arie s ..118
6.2.2 Conceptual Model 118
6.2.3 Physical M o d e l ...123

6.3 Determining the Compliance of the 7T-SPACE HyperCode System 126
6.3.1 Conceptual Model .. 126
6.3.2 Physical M o d e l ...128

6.4 The Towers Software Process Fram ew ork...129
6.5 Integration of HCS and Towers ...133

6.5.1 Simplifications of Tow ers... 133
6.5.2 WebServices... 134
6.5.3 Determining the Compliance of Integrated HCA and Towers 134

6.6 Criteria for Application Compliance...136

4

www.manaraa.com

6.6.1 Static Compliance ... 136
6.6.2 Dynamic Com pliance... 137

6.7 S u m m a ry ... 137

7 Evaluation of Compliance 139
7.1 In troduction ..139
7.2 The Evaluation A p p ro a c h .. 139

7.2.1 O bjectives.. 140
7.2.2 Process ..141

7.3 Evaluation of compliance on integrated layers 142
7.3.1 Integrating the compliant la y e rs .. 143
7.3.2 Determining Com pliance . 145
7.3.3 Summary of f in d in g s ... 145

7.4 Evaluation of a csa for a P S E E ... 146
7.4.1 A Sample Application Process Model: The Writer Checker(W-

C) M o d e l ... 147
7.4.2 Comparisons of Evolution Modeling and S u p p o r t 149

7.5 Non-Compliance ...153
7.5.1 Communication m o d e l .. 153
7.5.2 Thread Control m o d e l .. 154

7.6 S u m m a ry ..156

8 Discussion and Future Work 158
8.1 In troduction .. 158
8.2 Compliance Model on the P S E E ... 158

8.2.1 Determination of a c s a .. 158
8.2.2 A model of Active Compliance..158

8.3 HyperCode and the 7T-SPACE language...159
8.4 Compliance as a method for construction..160
8.5 The CSA T o o ls 160
8.6 Future W ork ...162

8.6.1 Language Compliance ...162
8.6.2 Compliance in H ardw are..163
8.6.3 Mechanisms and Policies as processes....................................... 163
8.6.4 From Determination to M easurem ent....................................... 163
8.6.5 Derived W o rk ...164

5

www.manaraa.com

8.7 Summary 164

Bibliography 166

A Enactable 7T-SPACE 177
A.l In troduction ...177
A.2 Reserved W o rd s...177
A.3 Grammar in E B N F .. 178
A.4 Code Generation R u le s .. 184

B The Tower M odel 193
B.l Towers in 7T-SPACE...193
B.2 HDev Node Component ...193
B.3 Specify M e th o d ... 195
B.4 Verify M ethod .. 195
B.5 N o d e .. 196

6

www.manaraa.com

List o f Tables

4.1 Annotations in enactable 7T-SPACE... 75
4.2 Local variables in Enactable 7T-SPACE... 76
4.3 Differences of the textual representation of communication channel

operations between specification and enactable 7T-SPACE............. 77
4.4 Differences of the behaviour definitions for components and con

nectors between specification and enactable 7T-SPACE................... 78
4.5 An example code generation rule that shows the type definition

and Instance generator in ProcessBase of a 7T-SPACE component . 83
4.6 Code generation rules for Operation p a ra m e te rs 84

6.1 7T-SPACE HyperCode Operations and their Domain Operations . 120
6.2 Effects of the Explode operation on 7T-SPACE Hyperlink types . . 122
6.3 Refinement of the Original Tower opera tio n s 135

7

www.manaraa.com

List o f F igures

1.1 Compliance and environment flexibility... 29

2.1 The CSA model Layers of Policies Mechanisms and Binding . . . 37
2.2 Process Feedback Control M odel.. 44
2.3 A model of the csa showing the required components of a compliant

sy s te m ... 47
2.4 Conceptual model of a HyperCode S y s te m 52

4.1 Language Compliance, Compiler and Language 87

5.1 The Architecture of the 7rPVM .. 98
5.2 Types in Communication C o n tro l.. 100
5.3 7T-SPACE types and their associated representations in ProcessBasel03
5.4 Global Control Structures in the ttPVM ... 114
5.5 Physical Architecture of libraries in ProcessBase.................................115
5.6 Physical and compliant models of the 7rPVM 116

6.1 The Conceptual Model of the 7T-SPACE HyperCode System . . . 119
6.2 The Architecture of the 7T-SPACE HyperCode S ystem123
6.3 A screenshot of the HCA showing the added 7T-SPACE button . . 124
6.4 The customisations made for the 7T-SPACE H C S125
6.5 Conceptual Model of the 7T-SPACE HyperCode System as a Com

pliant Systems A rch itec tu re ..127
6.6 Physical Model of the 7T-SPACE HyperCode System as a Compli

ant Systems A rchitecture.. 129
6.7 The Tower Model which consists of the Node (including Opera

tions) and the P 2E M etaprocess..132
6.8 The result of applying the csa model on the Towers Software Frame

work ..134

www.manaraa.com

6.9 The resultant architecture of integrating the Towers Node with the
H C S ..135

6.10 The resultant model from applying the csa determination model
on the integrated Towers and HyperCode S y s te m 137

7.1 The resultant model that is derived from the integration of the
Application, Language and VM L a y e rs ...146

7.2 The W-C model and some illustrations of W-C model evolution . 149
7.3 Construction of the W-C model using the HyperCode System . . 152
7.4 A Compliant Architecture view of the Thread Scheduler mechanism 155
7.5 A Final Compliant Systems Architecture m o d e l157

8.1 A model of Active Compliance...159
8.2 The CSA model of extending mechanisms .. 161

9

www.manaraa.com

A bstract

Software engineering requires an immense effort in finding the balance between
the rigour required for defining and constructing a concrete end product and
the flexibility required for ensuring that the ’final’ end product can evolve in
response to changing needs. A Process-Centered Software Engineering Environ
ment (PSEE) requires a corresponding balance between the requirement to model
and enact well-known processes and to be configurable to support informal and
less well-defined processes. This makes a PSEE a particularly demanding soft
ware application in terms of the requirements for sufficient rigour for specifying
processes and their predicted evolution, and sufficient flexibility for handling un
predicted evolution. The notion of a compliant systems architecture was based on
the observation that for many large, long-lived applications there is a mismatch
between the application requirements and the facilities required by the languages
and operating systems. In a compliant system the underlying system would be
flexible and configured to the needs of the application. If the application needs
evolved then so would the system architecture.

This thesis consolidates existing work on compliant systems architecture. It
provides a concrete definition of compliance, describing the properties that distin
guish between compliant and non-compliant systems. This is based on a exemplar
implementation that covers the complete range from the application to the virtual
machine. This exemplar implementation is that of a PSEE that enacts a formal
architecture description language (ADL). The flexibility of the compliant system
is exploited in configuring the architecture of the process which generates the
architecture of the product being produced. This facilitates the re-configuration
of the product architecture when the product requirements evolve due to changes
in the operating environment. This experience leads to a set of concepts and
guidelines for constructing a compliant PSEE for enacting a formal ADL.

10

www.manaraa.com

D eclaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree
or qualification of this or any other university or other
institution of learning.

11

www.manaraa.com

Copyright

Copyright in text of this thesis rests with the Author. Copies (by any process)
either in full, or of extracts, may be made only in accordance with instruc
tions given by the Author and lodged in the John Rylands University Library of
Manchester. Details may be obtained from the Librarian. This page must form
part of any such copies made. Further copies (by any process) of copies made in
accordance with such instructions may not be made without the permission (in
writing) of the Author.

The ownership of any intellectual property rights which may be described
in this thesis is vested in the University of Manchester, subject to any prior
agreement to the contrary, and may not be made available for use by third parties
without the written permission of the University, which will prescribe the terms
and conditions of any such agreement.

Further information on the conditions under which disclosures and exploita
tion may take place is available from the head of Department of Computer Science.

12

www.manaraa.com

A cknow ledgem ents

Firstly, I would like to thank Prof Brian Warboys, my supervisor, who has been
extremely understanding and supportive during this period of intense develop
ment and challenge of my life. Without his guidance, mentorship and reassuring
support, this endeavour would not have been possible.

I would also like to thank my colleagues and friends, Mark Greenwood, Ian
Robertson and Bob Snowdon who have been ever patient, understanding and
during most times had to put up with the interruptions to their work from my
constant questioning.

My parents, Chee Hong Seet and Yit Hoe Chan, without whom I will not be
able to play this little role in the world. Thank you for bringing me up to be the
person I have become so far. I hope my little achievement so far have at least
made you that little bit more proud that I have been useful to society. My thanks
to my brother, Wymen Seet, and sister, Elaine Seet, who have been providing
constant support and encouragement over the course of my research. You have
made being away from home alone all that much bearable.

I would also like to thank Aoy(Ms Suphasinee Limpanuphap), who has been
giving me all the support during the tough times even though she had to work
on her thesis as well. Thank you for the meals that nourishes me and your
cheerfulness that keeps my spirits up so that I can keep working effectively in
order to complete this thesis.

And lastly but certainly not the least, to my close-knit group of friends, Ku-
veshni Govender, David Smyth Boyle and Efrosini Deligianni for always being
there for me through both the good and bad times.

13

www.manaraa.com

C hapter 1

Introduction

This thesis is concerned with the use of the Compliance Systems Architecture(CSA)
approach for constructing evolvable systems. It demonstrates that such an ap
proach provides better support for evolvable process support systems than those
that were constructed using traditional software construction approaches. The
chapter establishes the scope of the research by first providing an overview of
the area of process modelling. This is achieved by introducing the fundamental
concepts, definitions and key problems that were identified from a survey of the
literature. The key role of a Process-Centered Software Engineering Environ-
ments(PSEE), for enacting process models, is to support real-world processes.
This approach to improving the software development process and thus also the
subsequent software artefacts generated from the process will then be introduced.

Much was promised by the use of PSEEs in improving the software process and
consequently the development of software but their utility in real-world software
development was far from significant. Some illustrations of current PSEEs will
be provided with emphasis on understanding the reasons that resulted in them
not being widely adopted. The problem area will then be derived and a proposed
model that is based on a definition of compliance will be described which forms
the premise for this investigation.

The research methodology will provide details on the research objectives, ap
proach and expected contributions from this investigation. An overview of the
chapters documents the research approach and the findings completed for the
thesis.

14

www.manaraa.com

CHAPTER 1. INTRODUCTION 15

1.1 P rocess M odeling

This work concerns the study of process modeling in and, in particular its use
to improve, the production of software artefacts. As such, the problems faced by
process modeling are similiar to those that are faced by Software Engineering in
general.

1.1.1 Softw are E ngineering

No exposition on the software process field would be complete without a men
tion of the software crisis which incidentally led to the need for a ’Software
Engineering’[60] field. The awareness of the software crisis and its detrimental
effects spurred the interest to understand the main causes that led to the crisis
and to provide better solutions in order to resolve the crisis.

Some initial approaches focused on refining the toolset that were already avail
able where each was constructed independently to solve specific problems of soft
ware construction. This approach has been reasonably successful in making it
easier for software developers to construct software that is more complex and
larger than previously possible. Some of the resultant tools and technologies from
the work done in this area are compilers, interpreters, operating systems, virtual
machines and code editors. This focus on the tools and technologies however, in
general, only addressed the coding phase of software development.

Another approach makes the assumption that the crisis was caused by the lack
of understanding of the problem domain which was exacerbated by the abstract
nature of software. An excellent image of how the abstract nature of software
could lead to difficulties in developing software can be found in the seminal article
by Brooks[14]. The illustration of a group of animals in a tar pit trying to escape
it but getting more trapped as they sink into the solidifying tar suggests that
tools by themselves are not sufficient to avoid or to tread on the tar pit. In
addition, developers need to know how to mold the tar such that they can tread
on it when required. In order to achieve this, the properties of software need to
be understood and specified with sufficient rigour.

The issue was mainly identified to be due to the lack of notations to aid
in the analysis and the specification of the problem domain and the proposed
software artefact solution. The solution provided by this approach resulted in the
introduction of new notations with well-defined syntax and semantics. In a way,

www.manaraa.com

CHAPTER 1. INTRODUCTION 16

the formality provided a grounding that allowed the abstract nature of software
to be made sufficiently concrete such that it could be understood and transmitted
to different developers. Providing rigour to the software artefact and the problem
domain provided a context that allows the understanding of the properties and
characteristics of the specified software. Some notations that were introduced and
used with reasonable success were the Vienna Development Method(VDM)[35],
the Z notation[34], B[102], Communicating Sequence Processes(CSP)[32] and 7r-
calculus[54]. However, most formal notations has so far been only applied to
domains which are either very simple cases or mission critical.

The work undertaken in previous approaches could be viewed as refining the
available primitive mechanisms which addressed the spectrum of problems that
ranged from the more concrete approach of software coding to the abstractness
of specifying the problem domain and the software artefact. The knowledge
gained from the previous undertaking laid the foundation in order to improve
the development of software. Early indications of this approach can be seen
in the development of notations that are more focused on their utility to pro
vide a guide to aid the development of software rather than on the rigour of
the notation. The result are semi or non-formal notations and methods such as
the Structured Analysis and Design Method(SADM)[24, 104], Object-Oriented
Analsis and Design Method(OOADM)[ll] and more recently the Unified Model
ing Language(UML)[12] which essentially is a unified notation for OOADM.

The use of a method or a combination of them provides an approach for
understanding the nature of software development itself. The realisation is that
each method provides a guideline or rule of thumb for a usage pattern of the
tools, technologies and notations. Further studies reveals that some organisation
of these usage patterns results in the production of better software whereas some
patterns produced software that were less than desirable. These patterns are now
generally accepted to be a process.

In a more recent survey of the state of software engineering, Wasserman[100]
listed eight key ideas ideas proposing a foundation of concepts, two of which,
the lifecycle and process, tools and integrated environments are directly relevant
for advancing the software engineering field and which he claims has already
been addressed by current studies in the software process field. The view is that
even though many high quality software were produced without an organized
and disciplined software process, these were exceptions rather than the norm as

www.manaraa.com

CHAPTER 1. INTRODUCTION 17

the importance of a software process to the success of a software development
project increases as the size of a team increases. He also cautioned that this
in no way invalidates that in smaller software projects, the software process is
not important. It can only imply that the level of support provided by tools in
smaller development teams in order to support the software process need not be
as sophisticated and thus can be managed and performed by an individual. This
suggests that a software process must be tailored to specific situations and needs.

An indirect result of the focus in process tailoring prompted the introduction
of lightweight processes whereby the processes are described more informally as
a set of guidelines and rule of thumb that are known to improve the construction
of software. The recent interests in Extreme programming[8] and agile processes,
which have generated a few conferences, seems to have struck a chord with those
who were disillusion with the original promised silver bullet[14] solution to the
software crisis.

The study of the software process is thus a significant area of research which
can contribute towards the goal of achieving the holy grail of ’Software Engineer
ing’. This, perhaps, was the reason why the Ninth International Conference on
Software Engineering in 1987 had a significant number of papers on the software
process where the seminal paper by Osterweil[62] described how the issues faced
in traditional programming could relate to that of process programming.

A significant amount of work has been done since then. Warboys[97] provided
some early reflections of the significant role that process modeling can attain
rather than being limited to within the traditional domain of software engineering.

Curtis [21] added that the modeling of processes provides an overview of the
current state of an organisation’s real-world process model. The process model
thus reveals what the creator of the process believes is vital in understanding or
predicting the phenomena modelled. This understanding of process models thus
offers another approach for tackling the ’software crisis’ problem. The following
section provides some definitions of a process and its key attributes.

1.1.2 D efin itions

A software process[26, 27] is described as consisting of process steps, the purpose
of which is to produce artefacts. Each process step is then further defined as a
either a task if it is managed or an activity if the step is unmanaged. A managed
process step is defined as one whereby resources are allocated for it, a schedule is

www.manaraa.com

CHAPTER 1. INTRODUCTION 18

attached to the process step, assigned to an agent, and its progress is monitored
against expectations.

Process steps are themselves performed by agents. These agents could either
be human or machine.

Another definition of a software process as provided by Ould[64], described
a process by not providing a direct definition of what a process is but rather by
describing the key features of a process. According to Ould, processes are:-

1. purposeful activity

2. carried out collaboratively by a group

3. often crosses functional boundaries

4. invariably driven by the outside world

These attributes point to a process being driven by human goals and activities.
Some other relevant characteristics that a process model and its formalism

should consider in order to model a real-world process can be found in Conradi[19].
The characteristics are listed as follows:-

1. Modularisation

2. Abstraction

3. Formalisation

4. Understandability

5. Clarity and Orthogonality

6. Evolution and Customisation

7. Monitoring and feedback

Most of these characteristics are focused on managing the complexity of the
notations and the resultant model that has been specified. The charateristics
numbered 1 - 5 are not dissimiliar to the characteristics which a typical software
artefact should possess. However, the characteristics of Evolution and Customi
sation^), and Monitoring and feedback(7) provide an insight into the additional
complexity faced by the modeling of software processes due to its inherent need
to evolve in order for the process model to continue to be useful for supporting
the real-world process.

www.manaraa.com

CHAPTER 1. INTRODUCTION 19

1,1.3 T he N atu re o f P rocess M od ellin g

Osterweil [62] in his seminal paper titled ’Software processes are software too’,
provided a key thought in that the problems that were faced by modeling soft
ware process are the same ones that software developers have been facing in con
structing software systems. The term Process Programming’ was arguably made
popular in this paper. Yet, Lehman[39] in his response to Osterweil, though
praising the contribution as being useful to certain areas, cautioned that the al
gorithmic biased view of formalising a process does not address the problems that
are caused by the informal needs of a process.

This notion is reiterated again later by Osterweil [63] where he provided a more
refined view described in his original paper[62]. He argues that the original view
of process programming was not what he would describ as ’process coding’. The
realisation is that process coding implies a one way process where the process is
elicited from observing the real-world process. However, this assumption is now
realised to be rather myiopic in that process code also affects the functioning of
the real-world process. This results in the need to have active models[84] that
are constantly being updated to reflect real-world changes.

Ould[64] provided a set of ’Laws of Process Modeling’ which generally con
cern business processes but, by their very nature, software processes are not just
about the technical aspects of providing support for tools. They are also the
support technology that works as the ’glue’ to support tools and humans that
work together to achieve a common, objective even if tools are not cogniscent of
the objective.

Cugola[20] provided a more current update of the problems that are still
being faced by practitioners and researchers in this field. He noted that even
though substantial progress was made in the field, some key challenges remain.
Process programming and the use of a PSEE were highlighted to be key challenges
that require more research. The rigidity of the environment was noted as a key
problem that prevented the PSEE from supporting, what was described as, a form
of process evolution that deviates from that built-in as part of the environment.

www.manaraa.com

CHAPTER 1. INTRODUCTION 20

1.1 .4 P rocess-C en tered Softw are E ngineering E nvironm ents

It can be argued that the concept of a Process-Centered Software Engineering
Environment (PSEE) is a logical extension of the Computer Aided Software En-
gineering(CASE) tool where computer software were envisioned to help create
computer software. Fuggetta[28] provided a classification of the different CASE
tools based on their level of process integration. The three categories of Tools,
Workbenches and Environments shows the level of process support a CASE ap
plication can provide. Tools alone provide the least level of process support where
the bulk of the tool’s execution is for supporting specific and technical support
of generating code. Workbenches provides a simple integration of several tools
where the focus is on allowing them to work together. Environments provide an
integration of Tools and Workbenches where their intricate interactions provide
better process support. Progressing from Tools to Environments, the point of
focus has evolved from technology into the support for processes which are more
undefined.

A PSEE provides an environment that allows process models to be enacted.
The term enacted is used, rather than execute, in order to differentiate the view
that processes should not be view as only executing within a machine but are
operating within the informal human domain. Enacting a process can thus be
described as an execution of human and machine processes and the intricate in
teractions between them. The result is a PSEE which uses software in order
to support human processes. The environment can provide the level of process
support according to what Madhavji[45] terms as descriptive, prescriptive or pro
scriptive. Descriptive models involve the description of a current process where
the intention is to just model the current state of the process. Prescriptive mod
els on the other hand provide the defined process, which is the view of a desired
process.

Proscriptive process models operate by prohibiting inappropriate programmer
actions. This provides a more tighter integration of the agents within the process.
Here the user is made aware of the process by some form of feedback to guide
and manage user actions within the process. In this manner, the agent is always
aware of their role in the entire process, A PSEE is supposed to provide both
prescriptive and proscriptive views.

Sommerville[87] attempted to provide an explanation as to why PSEEs have
not been well adopted in real-world usage. He contends that initial attempts have

www.manaraa.com

CHAPTER 1. INTRODUCTION 21

mainly been too focused on the technical aspects of providing an environment for
process control rather than effective process support. The view is that process
control assumes that workers within the process conform exactly to a set of rigid
procedures. Social processes provides the unknown and ’softness’ factor that must
be catered for by the environment. This observation goes some way in accounting
for the reasons that current approaches, of using a programming language to
describe processes, have been relatively ineffective.

These views are echoed by Warboys et al [98, 99] who suggest that process
modeling can benefit from the ideas from organisational theory and cybernetics.

1.1.5 Som e C urrent P SE E s

Some environments that are still being used, albeit more in a research environ
ment are Little JIL[90, 91], Apel and Process Web [103]. A description of Pro
cess Web is provided as it is the current PSEE that is accessible for our experi
ments.

Process Web, is a web-based front end for the ProcessWise[16] PSEE. Process-
Wise itself was derived from the IPSE2.5[95, 94, 85] project with the purpose of
creating an integrated environment for process modeling. ProcessWise can be
seen as consisting of three elements, the Process Control Manager(PCM) which
supports process enactment, The User Interface(UI) Server which allows the pro
cess models in the PCM to provide a UI to users and the Application Server
which provides an interface for extending the PCM with external tools.

The PCM forms the core, where models written in a language called Process
Modeling Language(PML), can be enacted. PML is an object-oriented language
which defines the basic classes for modeling Roles, Actions and Interactions. PML
also supports the dynamic compilation of PML where the initial state in the form
of variables of the evolved process is maintained and reinserted into the newly
compiled process. This facility provides a very powerful approach to supporting
process evolution. Process models written in PML are also persistent as long
as the process is still referenceable from the persistent root. The property of
persistence proved to be quite useful especially in preserving a process even during
a hardware failure.

www.manaraa.com

CHAPTER 1. INTRODUCTION 22

1.1.6 Som e C haracteristics o f P SE E

PSEEs are built to support what Conradi[19] defined as Human Oriented Systems
where computer based systems and humans interact to achieve a common goal.
This assumes that humans are themselves treated as tools or agents within the
system[95]. In order to describe and enact a process, a PML and a PCM is
used. As earlier PSEEs were more focussed in providing an environment for
executing processes, the initial environments were focussed more on re-adapting
the software development tools that were available then. This resulted in, for
example, the APPL/A [89] language being based on the ADA language with
some added constructs such as Relations, Triggers and Predicates.

PSEEs are also required to integrate a vast amount of tools which developers
have been using. Anderson[4] described a set of key open systems and integration
mechanisms such as CDIF, PCTE and the ESF software bus.

CDIF supports integration by describing a common data interchange format
which uses abstract data schemas to define exchange data but does not specify
the structure, content and interpretation by the tools. PCTE supports data
integration via a shared data repository and the use of published schema that
describes the structure and nature of the data but does not specify the interchange
protocol. CDIF and PCTE are thus deemed as complimentary technologies.

The Eureka Software Factory (ESF) provide a client-server approach where
tools provides services to each other in response to messages received along what
ESF describes as a software bus.

These integration mechanisms are meant to be as generic as possible as PSEEs
often need to interoperate with many different classes of external applications.

1.2 E volu tion(Softness) in P rocess M odelling

Sommerville[86] described the need to support informality in the software process
but noting that most software process modeling paradigms did not cater for this.
He justifies this by arguing that human systems are hard to formalise as they
are undefined and are prone to continous changes. He noted that though the
increase in formality had contributed to an initial improvement in quality and
productivity of software production, as the software artefact gets more complex
over time, the benefits from the application of formality has diminished. It is hard
to foresee much more improvement by suggesting more formality in the software

www.manaraa.com

CHAPTER 1. INTRODUCTION 23

process. Sommerville thus suggested that formality should be only used in order
to standardise and understand the underlying structure but should not be used
to constrain the emergent properties of a process.

1.2.1 Som e C haracteristics o f E volu tion

Lehman[40] describes a software system as being of different types. He differen
tiated them in terms of their potential for evolution. The labels given are the
S-type and E-type systems.

S-type systems assumes that operational parameters are completely catered
for. This implies that the assumptions that have been made during the creation
of the system are static and will not change. This is the dominant view that has
been adopted by engineering methods as it is often easier to construct systems
where all the operational parameters are known.

E-type system, on the other hand are systems which are continually evolving.
The intuition is that the current methods of analysing, specifying and construct
ing software results in systems that solve an outdated problem as the problem
domain, in which the software is supposed to function, has already evolved. Most
process models tend to be of an E-type system as they operate predominantly
within a human environment.

In a later publication, Lehman[42] revisited and reconsolidated all of these
rules. The ’Uncertainty Principle’ that is inherent in the design and implemen
tation of software systems that functions in a human domain will always be valid
as the assumptions are made in order to create a bounded system. However, the
operational domain is unbounded and thus the assumptions made during system
design and construction might well have changed.

This view is echoed by Beer[9] who quoted Ashby’s Law[6], ’Only change can
contain change’, in order to deal with the problems posed by complexity and
evolution. This idea can be extended to software, where the ’softness’ property
provided by software is used to manage some parts of itself.

Madhavji[45] proposes the concept of a process cycle that embodies both the
scope of engineering and evolution of software processes. Separating the process
cycle into three sectors that is based on the responsibilities of the process users,
Madhavji labels them as A. ’engineering process models’, B. ’managing software
processes’ and C. ’performing software processes’ The key aspect of this view is
that feedback is generated and received about the process from sector C.

www.manaraa.com

CHAPTER 1. INTRODUCTION 24

Robertson[76] argued that process engineering should adopt an evolutionary
approach as the modeled domain, ie the real-world process, is dynamic and thus
cannot be solved by traditional engineering approaches. The justification for this
is that the traditional engineering cycle of understanding the problem, then de
signing the solution to the problem and implementing the solution assumes that
requirements are complete, correct and consistent. Moreover, the artefact that
has been created as the solution is often non-adaptable. In this sense ’mainte
nance’ could be aptly named ’replacement’ of the software as it usually involves
a fixing a bug/feature by replacing/removing portions of the software that have
been deemed as not useful.

In summary most approaches for supporting evolution require some form of a
feedback loop that allows the system to be actively monitored so that the model
is as close a fit as possible to the relevant real-world process.

The support of evolution in software artefacts provides a key problem that
must be addressed in the software process. Software by its nature is malleable [14]
however it has generally been been built using hard engineering methods which
were more effective for creating physical and tangible products. There were at
tempts to make software more concrete by applying mathematics to the problem,
but the notation itself is complex and this makes verfication an extremely difficult
task. The application of formal notations to software is a good step towards the
construction of better software. However, the shortcomings of previous notations
is that they view the software artefact as a static entity. Current formal notations
such as the 7r-calculus [53, 54] attempt to rectify this by introducing the concept
of the mobility of interactions in order to model the dynamic nature of software.

In view of these problems, the best approach is perhaps to make use of software
that allows its softness property to model the software and to manage the common
problems normally associated by this softness. This view is not too distant, as
already, there are attempts to provide automatic model checking tools. There
are currently, however, insufficient studies on how effective and useful they are in
the real-world especially if they were to dynamically model check an executing
system.

1.2.2 M anaging E volu tion C om p lex ity

Modelling the evolution process is a complex undertaking even for very simple
models. There are however different approaches to manage this complexity. They

www.manaraa.com

CHAPTER 1. INTRODUCTION 25

are described in this section.

1.2.3 M eta -P ro cess

The meta-process can be defined as a process that manages another process.
This definition is purposely reflexive due to the realisation that the process that
monitors and controls another process is itself a process. The concept of meta
processes are evident in self-adaptive structures, flexible middleware, feedback
control systems and self monitoring systems. The novelty of a meta-process is
that it itself is a process which is specialised to monitor and manage the target
processes.

Robertson[75] gave a simple example of a simple banking process which itself
evolves over the course of its enactment and interaction within the environment in
which it is operating. The crucial difference made between the meta-process and
that of the target process, which he refers to as the operational process, is that the
meta-process is able to install ad hoc changes to the operational process where
as the operational process could only change in the way that it was originally
programmed.

This does not mean that the process being monitored will not be able to
affect the changes on its meta-process, but this is by design rather than a definite
feature. The scope of this work does not specify this but rather the aim is to
discover an enabling technology that should allow further explorations on these
issues.

For this investigation, it is useful to define the software process as consisting
of both a production process and an associated meta-process. This results in the
following formula:-

software process = software production process + meta-process

1.2 .4 H ierarchical S tructures

While the previous section explored and argued for the benefits of incorporating
support for evolution within the software itself, an issue which was not addressed
was the complexity of such an approach. Even without including the support
for evolution, the complexity of current software already systems presents a huge
problem by itself.

www.manaraa.com

CHAPTER 1. INTRODUCTION 26

This view is excerbated by viewing the software artefact as merely a construc
tion process. However, a better approach to significantly reduce the complexity
of incorporating evolution into a process model is to view the construction pro
cess as an evolution process. By this, the approach is that any software process
has its associated evolution process. This approach is compatible to Ashby’s law
which was mentioned before. The approach also has the added benefit that the
evolution process is always present. In contrast, in the traditional model the
evolution process is only embedded within the human process. This human pro
cess is then applied to projects or, in some instances, translated into project rule
documentations.

Complexity can also be reduced by structuring both processes, operational
and the evolution, in a hierarchy. Whyte[101] suggested that human thought,
both conscious and unconscious, must have arisen during the same time as the
human mind was able to organized thoughts in a hierarchy.

The use of hierarchical structuring in the field of computer science is well
described by Dijkstra[25] in his seminal paper which described a way to struc
ture an operating system in terms of layers. He also introduced the concept of
semaphores as a guard to shared resources by multiple processes. Parnas[65, 66]
described a set of criteria based on the concept of information hiding for decom
posing software into a set of modules where information hiding was desirable.
The importance of a hierachical structure are thus crucial to managing complex
ity and these ideas will be reflected by the consistent structuring over the layers
of a csa-based application.

1.3 Form ality (H ardness) in P rocess M odelling

Mathematics has been used as the language of precision for most branches of tra
ditional sciences. The precision and rigour offered by the language of mathematics
provides an unambigious format that preserves the semantics of the specification.
Properties of the system to be reasoned about are the properties that are exhib
ited by the specification and can thus be checked. What is more important is that
this allows a specification to be machine readable and thus machine checkable.

Mathematics is also a language of abstraction and of thought but this causes
some issues as not all thought can be formalised. Even though software is created
to run on a machine that should be based on the principles of mathematics, the

www.manaraa.com

CHAPTER 1. INTRODUCTION 27

domain of its execution is to serve needs whereby a mathematical model could
not yet exist and is not directly apparent. Most traditional mathematics, with
the constraint of having a rigid and complete model, will thus not be suitable.
Thus, Parnas[68] introduced a type of predicate logic where partial functions
are allowed where the resulting truth value of such functions is ’’undefined” in
contrast to the traditional predicate calculus where the resultant value is either
a true or false.

Further, Broy[15] described an example technique of using a current software
development notation with an associated formal notation for each of the non-
formal methods that has been used.

Some of the key reasons that formal methods techniques were not widespread
are due to their being too verbose, hard to specify, hard to reason about and most
usage has been limited to only very simple and low level systems. It might well
be that in order to prove that a very large system meets the criteia of safety and
liveness, the task to prove this will be longer than the usefulness of the system
in the application domain. This is the reason that most formal methods have to
date, been limited to only long running mission-critical systems where it is more
important to get it right the first time rather than constantly allow it to evolve
over the course of its execution.

Formal approaches are however useful especially as process models have the
tendency to be complicated and hard to reason about. For this investigation,
formality is assumed to be provided by the process modelling language itself.

1.4 H ypothesis

Having provided a summary of the area of research, the main problems faced
within the area, some previous attempts at resolving the issues and the potential
approaches that will drive the research, a hypothesis for this investigation can
now be derived. The research into process programming and PSEEs as a solution
for supporting real-world processes are still relevant today. There is, however, a
huge gap between the claimed and real value of current PSEEs as effective tools.

This work takes the premise that the reason for the lack of effectiveness of
PSEEs in supporting real-world processes is due to the large gap between the real
world process and its associated PML model which is enacted by a PSEE. The
main issue is due to the rigidity of the enactment system and its representation

www.manaraa.com

CHAPTER 1. INTRODUCTION 28

system. This is also due to a PSEE not supporting or not being able to provide
the correct level of support for the continuous feedback that is driven by the
imminent evolution requirement of the process domain.

In short, the view is that most current PSEEs were not designed to be compli
ant to the application, ie an evolving process model. Even PSEEs, that support
some form of evolution, were built to be compliant to the original process domain,
and the domain itself is vulnerable to forms of evolution which were not originally
envisaged.

A more concrete and detailed definition of compliance will be provided in a
later chapter, but for current purposes, compliance can be initially defined as the
ability of the support environment to provide sufficient mechanisms to support
the policy needs of the process models. Secondly, a PSEE application that is
considered as being compliant to the needs of a process model is able to evolve
to a form where it will remain compliant to the changing needs of the process
model which models the constantly changing real-world process domain.

To provide a summary of the hypothesis, Figure 1.1 shows a diagramatic view
of how a compliant systems architecture (csa) is designed to provide better support
for the real-world process domain compared to traditional PSEEs. The Physical
view highlights that for conventional systems, the only form of interaction with
the process domain is focused solely at the process model layer. In contrast, a csa-
based system allows a richer form of process domain to process model interaction
by allowing this interaction to influence the execution of the underlying software
layer.

The resultant logical view highlights that a csa-based PSEE could be better
tuned to model the process domain by allowing the customisation of the software
at all levels as compared to the traditional PSEE where customisations are only
provided by specifying the process model. The intuition is that the traditional
approach assumes that the PSEE is immutable.

In summary, this work attempts to verify the following hypothesis, that a sys
tem architecture, that has been constructed in the manner where it is defined as
being compliant to the needs of the process application to be supported, provides
a more flexible environment. Further, that this compliant environment is better
able to support process models that have the ability to evolve, even outside their
anticipated scope of evolution, as compared to one that is non-compliant or does
not have the notion of compliance designed into the system.

www.manaraa.com

CHAPTER 1. INTRODUCTION 29

Physical View

Process Model Process Model

PSEE
ApplicationProcess Domain

(Constantly Changing)Traditional
PSEE

Software Layers
Language

VM

Machine Machine

Logical View

Process Model Process Model

PSEE
ApplicationProcess Domain

(Constantly Changing)
Traditional

PSEE
Software Layers

Language

VM

Machine Machine

m ► Interaction messages between the Process domain and PSEE application domain

Figure 1.1: Compliance and environment flexibility

1.5 R esearch M ethodology

This chapter started by describing the field of research followed by an exposition
of the key problems that still needed to be addressed.

In summary the proposed approach is that of combining the best ’hard’ and
’soft’ properties offered by software in order to construct a more flexible PSEE
for supporting real-world processes. The hard(engineering+formality) approach
is still applied for building and structuring a software system in that formality
is used as a form of feedback through the checking of properties. This would
normally require the use of a formal language together with the use of model
checking tools. Formality is utilised in areas to create simple and well understood
models which are supported by a meta-process which itself is created using a

www.manaraa.com

CHAPTER 1. INTRODUCTION 30

formal approach. The softness in this case arises from the dynamic interaction
between the created process and its meta-process. In this view, the application
is given access to its soft properties instead of it being constrained, a view which
is also echoed by Warboys[98],

The research methology is driven by three major phases. The three phases
and their associated objectives are described as follows:-

1. Exploration and Definition - The objective of this phase is to provide a def
inition of compliance and what properties a systems architecture must pos
sess in order that it can be defined as a compliant systems architecture(csa).
A more concrete definition of a csa would provide a better understanding
of the Compliant Systems Architecture (CSA) approach for designing and
constructing systems that are compliant to evolving needs.

2. Construction - The objective of this phase is to test and refine the con
struction of software layers that are compliant to the needs of a PSEE. The
construction of the system layers would also serve as a feasibility test for
constructing different compliant system layers which are then integrated
to produce a complete compliant systems architecture. The complete csa
forms the PSEE which is used to execute process model applications.

3. Evaluation - This phase concerns the evaluation of the CSA approach by
integrating the compliant layers. This is used as a test to discover if a
system that has been constructed following the CSA approach is better
able to support evolution by virtue of its ability to be highly customisable.
The construction of a csa itself provides an evalution of the development
approach.

To achieve the research objectives for each phase, the following list describes
the associated tasks:-

1. Exploration and Definition

(a) Studying the characteristics of Compliant systems.

(b) Provision of a more concrete model of compliance that is more suited
for describing compliant system architectures for a PSEE.

(c) Mapping the Compliant Attributes into mechanisms and policies in
order to generate a Compliant Systems Architecture.

www.manaraa.com

CHAPTER 1. INTRODUCTION 31

2. Construction

(a) Define and construct a compiler in order to study Language Compli
ance and derive a set of criteria that can be used to test for language
compliance

(b) Define and construct a Virtual Machine in order to study VM Com
pliance and to derive a set of criteria that can be used to test for VM
Compliance.

(c) Define and construct tools in order to study Application tool Com
pliance and to derive a set of criteria that will be used to test for
Application Compliance. This will involve the construction of a Hy-
perCode system which is customised for the for the study of Language
Compliance. The HyperCode System is introduced in chapter 2.

(d) Construct a Compliant Systems Architecture for a PSEE that utilises
each of the already mentioned compliant system layers.

3. Evaluation

(a) Evaluation from the construction of a csa-based PSEE

(b) Evaluation from application of different evolution types on the csa-
based PSEE

1.6 R esearch C ontributions

It is expected that the results from this work will be directly relevant to the
field of software process modeling and enactment. In particular suggesting an
approach for constructing a flexible architecture that allows a PSEE to better
support all forms of evolution.

The following list details the expected contributions from this project:-

• A more concrete definition of Generic Compliance which is useful for de
scribing and differentiating a system which is compliant from that which
is not. This results should include descriptions of the properties that a
compliant system must have.

• A set of core attributes for constructing a CSA with a PSEE being the
example application.

www.manaraa.com

CHAPTER 1. INTRODUCTION 32

• An evaluation of a PSEE constructed using the CSA with that of a current
PSEE. Presentation of evidence to support that a compliant architecture
is better able to support the flexible real-world process which results in
deviated process evolution.

1.7 T hesis Structure

The thesis structure mirrors the phases that were described in section 1.5. Chap
ters 1-3 describes the work undertaken to support Exploration and Definition,
Chapters 4-6 describes the Construction theme and Chapters 7-8 details the Eval
uation and Conclusions respectively. Each chapter is described in more detail.

C h a p te r 1: In tro d u c tio n - The current chapter provided an overview of the
field of process modeling and an outline of the core concepts, definitions
and some identified key problems. A survey of process technologies and
the main problems which affects current PSEEs were also presented. This
chapter also described the hypothesis, the research methodology of testing
the hypothesis and some expected contributions from this undertaking.

C h a p te r 2: T h e C om plian t System s A rch itec tu re (CSA) A pproach -
The CSA1 approach which will be used for constructing the experimental
application will be detailed in this chapter. The approach supports the no
tion of constructing a compliant systems architecture by realising a software
application into mechanisms and policies. A description of the CSA tools
that will be adapted for constructing an architecture that is compliant to
the application will also be provided in this chapter.

C h a p te r 3: T he 7T-SPACE Language - This chapter provides a detailed de
scription of the formal Architectural Description Language(ADL) that has
been designed for specifying process models. 7T-SPACE is based on another
process algebra, 7r-calculus [54], with additional constructs for specifying
architecture elements. In addition, it also has specific dynamic operators
for specifying the evolution of architecture elements.

1The ’’Compliant Systems Architecture CSA Phase 2” project was an EPSRC funded project
at Manchester(GR/M88945) and St Andrews(GR/M88938), which was a continuation of the
CSA Phase 1 work. More information is available from http://www.cs.man.ac.uk/ipg/csa.html
and http://www-ppg.dcs.st-and.ac.uk/Projects/CSA2/

http://www.cs.man.ac.uk/ipg/csa.html
http://www-ppg.dcs.st-and.ac.uk/Projects/CSA2/

www.manaraa.com

CHAPTER 1. INTRODUCTION 33

Chapter 4: Language Compliance - This chapter details the work that was
required in order to design a language, based on 7T-SPACE, that can be
compiled and enacted. The application of the csa model for determining
compliance within the language layer will also be provided in this chapter.

Chapter 5: V irtual M achine(VM) Compliance - The theme of compliance
is explored within the context of VM Design and Implementation. The
mechanisms and policies and the decisions underpin the choice of mecha
nisms and policies will be described to justify if the VM can be considered
compliant to the needs of the application. The application of the csa model
for determining the level of compliance for VM Design and Implementation
will be detailed in the chapter.

Chapter 6: A pplication Tool Compliance - The criteria of compliance
within the context of the tool application will be explored here. The ap
plication tool provides a process agent with the interface to the underlying
PSEE. In essence there are only two basic components that are required, an
interface for specifying process models and an interface for specifying the
meta-process.

Chapter 7: Evaluation of Compliance - This chapter provides an evaluation
of the csa approach for building flexible systems. The criteria for each of
the layers will be consolidated to ensure if the architecture has been built to
be compliant to the application, the PSEE. The resultant csa-based PSEE
application will then be tested against different types of evolution. These
evolution scenarios are designed to investigate if a csa-based PSEE is better
able to support inherent evolution of process models in the PSEE.

Chapter 8: Conclusions - This chapter provides a summary of the problems
and sums up some conclusions and understandings that can be derived from
the work. Some potential future research avenues are also provided in order
to provide a continuity to this work and more importantly to establish the
relevance of this work with other areas.

www.manaraa.com

CHAPTER 1. INTRODUCTION 34

1.8 Sum m ary

The understanding and modeling of processes presents both an opportunity and a
caveat for improving the approach of constructing software systems. The oppor
tunity is exemplified by the ability to mold the software through its interaction
with its external environment. The caveat is to understand the complex under
lying problems which allows the PSEE to support this type of required flexibility
which deviates from the pre-set notions of evolution that existing PSEEs were
built to support. Current PSEEs simply failed to support this form of evolution
which explains the lack of adoption of such environments in real-world software
development.

This work proposes an approach to contructing PSEEs and more generally
to constructing an environment that is built on a systems architecture which
is compliant to the needs of evolvable software systems. This implies that the
entire system, which consists of the underlying operating system all the way to
the interface is constructed in a manner that is defined as being compliant to the
application. This approach demonstrates a method for constructing environments
that are able to support deviated evolution, a form of evolution that was not
expected and thus designed into the initial system.

The results of this work are documented in the remaining chapters.

www.manaraa.com

C hapter 2

T he C om pliant System s
A rchitecture(C SA)

2.1 Introduction

This chapter provides a description of the Compliant Systems Architecture(CSA)
approach developed as a concept during two EPSRC projects aptly named CSA1
and CSA21. The novelty in the approach is that it provides a method for con
structing flexible systems architecture that are defined as being continuosly com
pliant to the needs of supported applications.

A definition of generic compliance, a term used in [57], is firstly given. This
will then be followed by a review of the literature that focuses on the definition
and use of compliant structures in other research areas. In particular the use of
compliant structures within the fields of Mechanical/Manufacturing Engineering
and Robotics will be briefly explored. The purpose of the review is to study
the use of compliance and the properties that define the meaning of compliance
in other engineering fields. This will assist in a derivation of a more concrete
definition of compliance that is suitable within the context of software engineering.
This then results in a definition and model which can be used for determining
the compliance of constructed software systems.

A summary of the properties that are required for constructing a systems
architecture that is compliant to the needs of a PSEE is also provided. As the

1The CSA project was a collaboration between the Informatics Process Group, Department
of Computer Science at the University of Manchester and the Persistent Systems Group, De
partment of Computer Science at the University of St Andrews. CSA1 Grants, GR/L32699
and GR/L34433 and CSA2 Grants, GR/M88945 and GR/M88938

35

www.manaraa.com

CHAPTER 2. THE COMPLIANT SYSTEMS ARCHITECTURE(CSA) 36

CSA toolset was used to construct the test prototype in this experiment, the
chapter concludes by giving a description of the CSA toolset with particular
emphasis on their ability for supporting the construction of a csa.

2.2 T he C om pliant System s A rch itecture A p

proach

Current software applications are built by firstly building the underlying founda
tion and then layering the required functionality required by a selected generic
set of supported applications. This bottom-up approach is mainly due to initial
approaches being more focused on discovering the feasibility of constructing a
specific structure and on how to construct a core set of logical layers based on
the machine layer. The idea is that in order to construct a generic architecture,
a concrete architecture has to be built as a prototype that can be used to ex
plore and understand the core issues. This understanding can then be used as
a basis for constructing a generic architecture. This approach would generate a
valid static layer if the domain and scope of the application is well-known and
defined. However, this is the exception rather than a rule for human systems.
This approach often produces highly generic layers which might not be suitable
for all classes of applications. The assumption that the generic layers are static
might not hold true for all classes of application especially in the case of a PSEE
as the domain within which it operates demands a more flexible underlying core.

In view of this, the CSA approach takes a top-down approach to focus on
the needs of the application in order to construct a core set of underlying layers.
This approach is analogous to that proposed by the Requirements Engineering
process, that is to create a set of requirements which should be met by the system.
Requirements are however abstract and worded in an informal format which are
themselves open to interpretations and hence the top-down approach needs some
built-in flexibility.

A general view of the CSA is shown in figure 2.1. A compliant system is repre
sented as a set of layers with are composed of mechanisms and policies. Within a
particular layer, for example layer i-i, policies are bound to a set of mechanisms.
The set of policies that are bound will themselves form the mechanisms for the
corresponding layer above. For our example, this means that the policies at layer
i-1 will be the mechanisms for policies at layer i. This model of compliance is

www.manaraa.com

CHAPTER 2. THE COMPLIANT SYSTEMS ARCHITECTURE(CSA) 37

applied consistently across all the layers within the system.
In this manner, the CSA approach proposes a simple model which is suffi

ciently flexible and yet concrete to model a system at all layers.

£ i - 1
0

S '

i - 2

i - 3

M Mechanisms
P Policies

i—► Binding

Figure 2.1: The CSA model Layers of Policies Mechanisms and Binding

This is coupled with facilities for reconfiguring the layers so that the property
of compliance can be maintained. A definition is provided in the next section
in order to clarify the definition of a compliant systems architecture (csa). Of
particular interest are the inherent properties that allows a csa to treat the generic
layer as a dynamic system that is still prone to change.

A clarification of the difference of csa and CSA is required at this point,
csa (small caps) refers to a particular instance of a systems architecture that has
been constructed to be compliant to the needs of an application. CSA defines the
approach, the project and the tools associated with the EPSRC project which
developed the initial concept, ideas and tools.

www.manaraa.com

CHAPTER 2. THE COMPLIANT SYSTEMS ARCHITECTURE(CSA) 38

2.2.1 G eneric C om pliance

Morrison et al[57] described a csa as one that provides the ’best-fit’ infrastructure
for the intended application. To meet the needs of an application, a csa is layered
by separating the mechanisms and policies of components in the applications.
These basic components form the basic elements needed to view a system at all
levels.

Policies are defined as goals or objectives to be achieved. An example of a
policy need for a PSEE is the support for process evolution.

Mechanisms are defined as the means by which policies can be achieved.
Example mechanisms for supporting the evolution support policy are the specific
meta-process for detecting the need for evolution, the repository for storing the
evolving models and a reflective compiler for installing and enacting the resulting
model.

Policies can be bound to a set of mechanisms by a binding rule. The binding
rule is described in the form of a set of upcalls and downcalls between the policy
and one or more mechanisms. The binding rule is thus bi-directional which is
compatible with the model as proposed for active systems, that is feedback is an
essential property of an active system.

The novelty of the CSA approach is that the mechanism information in upcalls
and policy information in downcalls does not need to be encoded in the same
language. Each layer in the systems architecture can be implemented using their
native calling convention utilising the language that the layer supports. For
example, an operating system written in the C [36] language, might implement
the downcall to the underlying mechanism as a C function call and the upcall
from the mechanism as an interrupt call to be handled by the policy.

A system with generic compliance will thus has a system layer n with the
following property:-

policyn mechanism n_i = mechanism n

where :-

• policyn is the policy for layer n

• mechanism n _ i is the mechanism for layer n-1

• ®n operator is the binding rule for policyn and mechanism n„i

www.manaraa.com

CHAPTER 2. THE COMPLIANT SYSTEMS ARCHITECTURE (CSA) 39

• mechanism n is the result from the application of the binding rule

An interesting result of this property is that a policy at layer n that has been
bound to an underlying mechanism at layer n-1 will result in the mechanism for
layer n.

To determine if a layer is compliant to the needs of the policies above it, the
application of the binding rule must result in a set of mechanisms that meet the
policy needs at the layer above. A binding rule that results in a set of mechanisms
that does not provide for the policy needs is deemed to be non-compliant.

This provides an approach for constructing a csa that has been derived from
the needs of the application. The actual process of implementation can still
be performed following a bottom-up manner but in order for the system to be
compliant, the implementation process must be driven by the top-down needs of
the supported application.

To further clarify this point, in order to maintain system compliance, each
layer must be compliant to the layers above it. The © operator defines how the
policy and mechanism are bound together to provide another mechanism for the
upper layers. This is compatible with the concept of maintaining some ’trans
parency’ to the underlying functions of the virtual machine that was described
by Parnas[69] some decades ago.

A compliant system is thus defined where for all layers, the property for
compliance at each layer is true.

Morrison[58] listed an approach for deriving the layers that can be used to
construct a compliant systems architecture. The approach requires the following
to be specified:-

1. the number of layers in the architecture

2. the system functions required, eg, recovery, scheduling, clock ticks, etc

3. the method used for specifying policy information

4. the method used for passing information between layers and system functions(up-
calls, down-calls, horizontal calls)

The definition provided for Generic Compliance is however too generic and
abstract a model for determining and constructing a csa-based system. How
ever, the definitions provided for Generic Compliance do provide a good point of
reference in order to explore its novelty further.

www.manaraa.com

CHAPTER 2. THE COMPLIANT SYSTEMS ARCHITECTURE (CSA) 40

2.2 .2 D efin ition o f C om pliance in O ther R esearch A reas

Two research areas where the definition of compliance can provide some insight
into deriving a more concrete definition of compliance are from the fields of Me
chanical/Material Engineering and Robotics. Both research areas advocate the
need for compliant mechanisms and approaches which result in end-products that
are better suited for the intended application and thus are easier to adapt to the
changes within their individual domains.

M echanical/M aterials Engineering

Ananthasuresh[3] noted that compliant materials have less parts and better strength
and durability when compared to non-compliant materials that were designed us
ing conventional engineering approaches. Compliant materials are described as
having the following characteristics in contrast to non-compliant materials:-

1. Flexible and strong rather than rigid and strong

2. Are more reliable as they possess fewer moving parts

3. More resilience yet flexible enough within the domain in which they operate

4. Integrated so well with the surrounding domain in within which it operates

Ananthasuresh used the term ’compliant mechanism’ in order to describe an
adaptive structure that was designed to operate as part of the domain in which
it is operating. It achieves this flexibility by utilising structural deformation to
transmit force or deliver motion due to an input. This is in contrast to being that
of a rigid structure that consists of actuators, sensors and feedback controls in
order to simulate a system with the facility for compliant geometrical adaptation
for different conditions. Rigid systems are thus cumbersome, energy inefficient,
expensive and unreliable due to the range of different components that need
to function in order to simulate the functions that are available in a compliant
structure. The underlying structure of a compliant structure is designed to be
inherently adaptive (or compliant) which results in a final design that will require
fewer actuators and provide a more precise control over force and motion.

The two types of compliance that are relevant here were described as dis
tributed and lumped. The term distributed compliance was used to describe mate
rials where their flexibility is distributed equally across the entire mechanism. In

www.manaraa.com

CHAPTER 2. THE COMPLIANT SYSTEM S ARCHITECTURE(CSA) 41

this manner no one portion of the material is thinner than the other. In contrast,
lumped compliance uses rigid link mechanisms to simulate the flexibility exhibited
by distributed compliance.

The interesting summary from looking at the research conducted into com
pliant materials suggests that they are ’grown’, constructed and adapted from
materials that are compliant to the environment within which the material is
operating. This is as opposed to the traditional approach of first constructing
a set of objects that are foreign to the environment and then combining these
sets of foreign objects to form a finished product that has been force fitted to the
environment.

An example illustration where the use of compliant mechanisms is not only
useful but crucial can be found in the materials that are used to manufacture
the wing of an aircraft. The shape of the wing directly affects the lift and per
formance of flight of an aircraft that is operating in ever changing conditions. A
wing built using compliant mechanisms are better able to adapt to the required
structural changes in order to continue operating effectively within changing op
erating conditions. In contrast, an aircraft wing built using conventional methods
would utilitise joints, seams and hinges in order to provide the required structural
changes. Not only would the wing not be able to respond effectively to changes
within the operating environment, the use of joints, seams and hinges would re
sult in discontinuities over its surface. These discontinuities result in a wing with
undesirable fluid dynamics which not only reduces the effective performance of
the wing but would render it unsuitable for flight.

R obotics

In the field of robotics, the term compliance has been used to describe how
the parts that make up a robot fit together such that they interact with the
environment in a compliant manner. Most of the problems faced within the field
of robotics are quite similiar to those faced by the construction software. Robots
are dynamic entities which are constructed using engineering approaches and they
are normally used to operate within a human environment. Some examples of
the type of compliance will now described.

Mason [46] described how compliant motion of manipulators can be produced
either by passive mechanical compliance built into the manipulators or active
compliance(also known as force control) which is implemented in the control servo

www.manaraa.com

CHAPTER 2. THE COMPLIANT SYSTEMS ARCHITECTURE(CSA) 42

loop.
The force control is based on:-

• manipulator which is described as the ideal effector and

• task geometry which is described as the ideal surface

A formal model of how the control units map from the language to manipu
late these variables was also given. Mason describes that ’’compliant motion” is
achieved by programing a robot to react in a graceful manner when it comes into
contact with other objects.

Kosuge et al[37] proposed the concept of structured compliance that can be
used to describe the compliance of planar parts mating between two parts. The
compliance is defined as a model over a generalised coordinate system which
also takes into account the friction and positioning errors between the parts.
The concept of structured compliance is defined as applying the compliance by
applying it over a specific coordinate system.

A good example of compliance in robotics is its used for building a robotics
arm. Generally, compliance in a robotics arm refers to the displacement of the
wrist in response to the force that is applied on it. High compliance means that
a robotics arm is displaced more with a relatively amount of force. The use of
compliance in a robotics arm is thus an attempt to model the complex range
of movements of a human hand and the dynamic readjustments that the hand
would need to make when it makes contact with another object.

A Refined Definition of Generic Compliance

The definition and use of compliance within two other engineering fields clearly
provides a more concrete foundation for deriving a refined definition of compliance
that is useful in the area of software engineering.

Both fields have the key advantage of being well developed and researched with
concrete mathematical models that closely reflect their corresponding physical
objects. This is to be expected as physical phenomena is easier to observe and
thus measure than the phenomena that is generated indirectly from the execution
of abstract software artefacts. However, a few insights can still be derived from
this survey that can help to refine the model of compliance.

Compliance is described as being a best-fit or well integrated solution where
the product performs as a natural extension to its domain of operation. Even

www.manaraa.com

CHAPTER 2. THE COMPLIANT SYSTEMS ARCHITECTURE(CSA) 43

though both fields describe the need for compliance in their materials, it is ap
parent that an element that is compliant must be related to something else. This
could be within the domain in which it is operating or related to other elements
which are of the same or different type. The terms used were structural com
pliance, distributed compliance and passive compliance. The CSA definition of
Generic Compliance is similiar to these definitions of compliance as the focus is
on creating a structure that meets the needs of the application within the scope
of its operating domain. Clearly, one could argue that this definition of compli
ance is no different than the approach taken in creating modular software. The
distinction lies in the explicit separation of mechanism and policy across the dif
ferent software layers, and the requirement that the result from the application
of the binding rule will result in a mechanism that will remain compliant to the
needs of the policy of the application.

Another term that describes a property that is useful for our definition of
compliance is that of active compliance. Structural compliance by itself allows
only changes that has been pre-determined and catered for by the structure dur
ing design. Active compliance allows for more adaptability to changes that are
external to the original operating domain.

This is catered for by the inclusion of a dynamic feedback control loop in
order to dynamically maintain structural compliance even when the domain of
operation has changed. This type of compliance seems to be unique to systems
that can detect and support reflective changes. It is thus not surprising that
active compliance is prevalent in robotic systems and consequently required in
highly flexible systems.

Lehman et al [41] contends that there are major differences of feedback within
software process systems from those of classical feedback control systems. A
model of the Process Feedback Control Model (taken from [41]) is shown in figure
2 . 2 .

The key difference in software development processes from the fields where
classical feedback control systems has successfully been applied, is that a large
proportion of software development processes are design rather than production
processes. Design processes involve a more informal and creative component
which demands a more elaborate model than the simple feedback control loop.
From the diagram, this means that a PSEE is more prone to changes as the
range of I is more. The result is that the O and R will be more elaborate which

www.manaraa.com

CHAPTER 2. THE COMPLIANT SYSTEMS ARCHITECTURE(CSA) 44

PE

PU R
PU - Process Unit
C - Controller
PE - Process Element
I - Input
O -Output
R - Result____________

Figure 2.2: Process Feedback Control Model

translates to the requirement that the C will itself have to be more elaborate to
handle this increase in complexity.

The conventional model of control theory is based on the explicit premise that
change can be planned. Dalcher [22] however, described that complex systems,
in particular software systems which are by their nature soft [98], malleable [14]
and tractable rarely repeat themselves and thus more concerted effort is required
to decipher and plan the inherent dynamics of the interacting systems and their
effects on the overall system. The dynamic relationship between feedback, plan
ning and control that is proposed by Dalcher, suggests that in order to support
the changes in the system, each component within this interaction should be
amenable and thus customisable to change. Instead of incorporating the spec
trum of changes that the system can support, the entire system itself should be
open to change. This principle underpins the theology of the CSA approach.

2.3 D eterm in ing Com pliance

A definition of compliance can now be provided which incorporates the original
definition of Generic Compliance from the CSA project and the use of compliance
from different fields of research. A formal model is now described to provide a

www.manaraa.com

CHAPTER 2. THE COMPLIANT SYSTEMS ARCHITECTURE(CSA) 45

more concrete definition of compliance which can be used to determine if a system
can be termed as being compliant to some property.

The first rule of a compliant system is that, it must be described in the
same form as that of the problem domain. Within the context of a software
application domain, this assumes that the application must be described in the
form of mechanism, policy and binding rule. The Universe of Discourse of a such
system can be given as follows:-

Definition 1: A system is a 3 - t u p l e w h e r e

1. M = Set of all mechanims

2. P = Set of all policies

3 . 0 — Set of all Binding Rules that maps the p to m where p eP and m€M

The binding rule must consist of a downcall and an upcall where policy in
formation can be passed downwards and mechanism information can be passed
upwards respectively. The policy and mechanism information need not be the
same form or type for all levels. The only constraint is that policy and mecha
nism information must be compatible and useable by the immediate layer where
policy and mechanism information are exchanged. Each of the tuples within a
compliant system is further described in the following definitions.

D efinition 2: A binding rule © is a 2-tuple (it, d) where

1. d — downcall, a function that maps p to m, d(p) —>■ m

2 u __ UpCap } a function that maps an m to p, ie u(m) —> p

where m G M and p 6 P
The measure of compliance is defined by the mechanisms providing sufficient

support for all the already defined policies. The definition of providing sufficient
support is determined by the existent of a binding rule that maps each policy to
at least one mechanism. If a binding rule does not exist for a particular policy,
this implies that there is no mechanism that is able to support the policy and
thus the mechanisms available are not compliant to the policy needs.

Thus, the definition of a Compliant Systems can be defined as:-
D efinition 3: A system (s) is defined as being compliant(r) to the needs of

the policies when:-
{Vp € P: 3 © n E 0 : n^number of layers in the system}

www.manaraa.com

CHAPTER 2. THE COMPLIANT SYSTEMS ARCHITECTURE (CSA) 46

where 0 = Binding Rule which maps all P to M
In order to simplify the measure of compliance, a function can be introduced

with the following definition:-
The Determination of Compliance function T requires three parameters, M,

P and 0 and returns the boolean values of True and False depending if the pa
rameters satisfy the definition of a Compliant Systems as provided in D efinition
3 . Thus the determination of compliance function T can be defined formally as:-
r:{M ,P ,0} —> T,F where
T(M ,P,0) -* T condition of compliance detailed in Definition 3 is achieved.

In this way, the determination of system compliance can be defined as a binary
function which returns true when the above condition for compliance is met and
false otherwise.

The measure of compliance can be extended further in order to provide a more
fine-grained measure of a compliant system. Two different types of compliance
are directly apparent.

As most systems are conceptually realised in the form of layers, the concept of
layer compliance is useful. The property of layer compliance defines that a layer
of software support must itself be constructed from a set of compliant mechanims.
Layer compliance is thus defined as:-

D efinition 4: Layer compliance is a specific type of compliance where the
measure of compliance is applied to a layer of the system. The set of mechanisms,
policies and binding rule of a compliant layer are represented as M/, P i and 0 i
respectively where I is defined as a particular layer within a system.

A Compliant Layer(Lc) is a software layer within a system whereby the prop
erty layer compliance holds true. The property layer compliance is defined by the
rule which states that there exists a binding rule for each available mechanism
within the layer. The property of Layer Compliance is described formally as:-

Vpi G P i : 3© i G 0 , Vmj G IVfi: r(m j, p)̂ —> T

In order for a system to be defined to have achieved system compliance, the
system must be constructed from layers of software where each has defined to
have achieved layer compliance. The measure of system compliance can then be
applied on the individual layers by checking the existence of a binding rule for all
the policies of the upper layer to that of the mechanisms at the lower layer.

D efinition 5: A compliant systems architecture can be defined as a system
that is composed of one or more compliant system layers where each layer I is

www.manaraa.com

CHAPTER 2. THE COMPLIANT SYSTEMS ARCHITECTURE(CSA) 47

defined as a compliant system architecture when the following condition holds
true:-

VI, leL: r (Mi_!, P i , ® i) ^ T

All previous measures of compliance are required in order to achieve ac
tive/dynamic compliance which utilises all the measures of compliance in order
to dynamically monitor and determine if the current system remains compliant
to the needs of the real world application. This form of compliance is achieved
by the use of a meta-process that allows the system to continually be changed in
order to reflect the changes in the real-world system. The model for this meta
process is influenced by a feedback control loop which is similiar to the control
loop as described within control systems theory.

An illustration of the final model of a compliant system that consists of the
main components that must be available in a compliant systems and the binding
rule which provides the interactions between the components is shown in diagram
2.3

Downcall
Binding

Rule
Policies Mechanisms

Upcall

Figure 2.3: A model of the csa showing the required components of a compliant
system

2.3.1 A d d ition a l P rop erties o f C om pliance

Clearly, this definition of compliance exposes some conditions when a systems
architecture might be defined as non-compliant to the application. Some other
forms of non-compliance arises when policies and mechanism are duplicated repli
cated across the system. The duplication of mechanisms means that there are
more than one instance of the same mechanism implemented within the system.
Duplication could either occur within the same layer or at other layers.

In order to specify that a non-compliant system does not have duplicated
mechanisms, some further constraint on the model of determination of compliance
is required. In addition to the definition of a compliant system in Definition 5,
the following rule must hold if there is to be non-duplication of mechanism within
a system:-

www.manaraa.com

CHAPTER 2. THE COMPLIANT SYSTEM S ARCHITECTURE(CSA) 48

VI : mj e M is unique

2.4 A D efin ition of C om pliance for PSE E s

Having described compliance in general, the policies that determine the compli
ance that are relevant for constructing a PSEE are now described.

2.4.1 P o licy requ irem ents o f a P SE E

The main purpose of a PSEE is to support the development and enactment of pro
cesses. As such, two basic policies are required for any PSEE in order to provide
process support. The basic policies of Process Enactment and Communication
are required.

The Process Enactment policy describes the basic primitives and abstractions
of the processes supported. Some examples of these are roles, tasks and actors.
The policy also specifies how the processes are executed, for example how pro
cesses are scheduled according to the execution model.

The Communication policy describes the types of interactions between the
process elements that are available. Communication policies involve, for example,
the communication protocol and some communication properties such as blocking
or non-blocking transfers.

Both these policies are well defined and thus well supported by the underlying
mechanisms of current PSEEs. However, in order to ensure that the PSEE is kept
up to date to the needs of the process model where its requirements are driven by
the human processes domain, a third policy that of Evolution Support is required.
This defines the meta-process that is responsible for monitoring the feedback from
the operational process model, deciding on the response on the feedback and the
reinstallation of the required changes on the operational process.

The csa-based PSEE will need to be constructed from many compliant layers
where each layer should be compliant to the needs of the top-most three policies
of Process Enactm ent, Communication and Evolution Support. Each layer will
have their own policies that are derived from these three policies.

The property of passive compliance or structural compliance may be sufficient
for supporting applications that are either static or only support changes where
they can be pre-determined or anticipated. Process models however have the

www.manaraa.com

CHAPTER 2. THE COMPLIANT SYSTEMS ARCHITECTURE(CSA) 49

inherent ability to evolve in ways that cannot be easily pre-determined. To sup
port such evolution, active compliance is required. This property requires that a
compliant structure must itself provide a reflective component which allows itself
to be reconfigured to maintain compliance with the evolved application. This
suggests the requirement for a meta-process which is similiar to a control system
that has a complete feedback/install cycle to ensure compliance.

The notion of active compliance, a term often used in the field of cybernetics,
should provide a suitable approach for supporting the evolution of process models
which require changes that were not pre-determined during the design of the
PSEE. It should also be noted that the policy needs are not an exhaustive list
and in fact they are vulnerable to changes themselves. However, the evolution
policy might provide a sufficiently flexible approach to cater for these changes.

2.5 D escrip tion o f C SA Tools

The CSA project produced a set of tools that can be adapted and used for con
structing compliant architectures although these were never really exercised by
applications within the timescale of both CSA projects. The toolset was designed
to provide a basic system architecture that can be customised to meet the com
pliant needs of an application. In order to achieve this purpose, each CSA tool
was designed and constructed to support the construction of a csa. This set of
tools is termed compliant tools as the tools themselves could each be viewed as
a key component of a csa. Compliant Tools support the construction of a csa
by providing the basic underlying mechanisms to support structural compliance.
Within the CSA project, the compliant tools consist of:-

• A compliant Operating System, ArenaOS.

• A compliant PML with a compliant abstract machine called ProcessBase
and PBAM respectively.

• A compliant systems development environment called the HyperCode Sys
tem.

www.manaraa.com

CHAPTER 2. THE COMPLIANT SYSTEM S ARCHITECTURE (CSA) 50

2.5.1 A renaO S

The Arena[48, 47] operating system(OS) is built by utilising a very simple nanok
ernel that can be configured by Hardware Objects(HWO). A HWO provides a
generic interface to access hardware resources. Device drivers interact with the
HWO. Policy information is specified in the form of Resource Managers(RM).
Resource Managers interact directly with the HWO in order to achieve their
goals. Example RMs are the Networking RM, Scheduler RM, I/O RM and etc.
From the viewpoint of CSA, the ArenaOS provides RMs for specifying policy
information and HWO for defining the mechanisms.

2.5.2 P ro cessB a se and P B A M

ProcessBase[56] is a strongly typed language with orthogonal persistence. It was
designed as the simplest class of programming language for constructing process
support environments. ProcessBase can be extended at two levels. The first is
by writing new libraries in ProcessBase. This is similiar to the manner in which
the C language can be extended using libraries written in C. The second method
provides more access to the underlying abstract machine. This method allows
the introduction of new opcodes or new parameters to existing opcodes to the
underlying abstract machine. Essentially this allows the abstract machine to be
reconfigured to support the policies needs that were not originally available in
the core language.

Whereas the downcall is provided by function calls written in ProcessBase,
the upcall to the language is provided by the use of exceptions and interrupts in
the language. Exceptions are run-time errors during the execution of ProcessBase
and interrupts are messages from the OS. Both types of upcalls can be detected
within the language which allows a ProcessBase another level of flexibility to deal
with any form of feedback which is available at the lower software layers.

The ProcessBase Abstract Machine(PBAM)[55] is the abstract machine that
has been defined to provide the enactment portion for models written in the
ProcessBase language. A virtual machine has been constructed in the form of a
ProcessBase interpreter that translates and executes the PBAM opcodes on the
native machine.

www.manaraa.com

CHAPTER 2. THE COMPLIANT SYSTEMS ARCHITECTURE(CSA) 51

2.5.3 T he H yp erC od e S ystem

The purpose of the HyperCode [105, 106] approach is to unify the representation
and entity domains of a software system. This is achieved by providing a single
representation of both domains and by introducing a set of operations in order
to keep both domains consistent with each other. The domains are classified
as the representation(R) and the entity(E) domains. The R domain denotes
the source representation of the system whereas the E domain represents the
corresponding domain of entities that contains all the first class values defined
by the programming language together with various denotable non-first class
entities such as types, classes and executable code. Entities in the E domain can
be classified as executable and non-executable. Consequently, the R domain can
be partitioned into a set of representations of executable entities and a set of
representations of non-executable entities.

In order to make sure that the state of the same entities in the R and E
domains are consistent at any time, Vangelis[105] also defined a set of domain
operations that are required for defining a basic HyperCode System. These op
erations are detailed below:-

• reflect - reflects the model from the R domain into the E domain

• reify - reifies the current state of the entities within the E into the R domain

• execute - executes the model in the E domain

• transform - allows transformation of the R domain

Figure 2.4, taken from [105], shows the conceptual model that describes how
the domain operations are used to ensure that the E domain is consistent with
the R domain.

The HyperCode System is made up of a HyperCode Assistant(HCA) and a
HyperCode Server(HCS). The HCA provides the interface for the user to create
and interact with HyperCode models. The HCS provides the basic operations
which implements the basic HyperCode Operations. The HCA allows the viewing
and construction of programs by representing the entities as text and hyperlinks.
Textual representation provides the static description and hyperlinks provides
a reference link to dynamic entities which can be constantly changing. This
mix of text and hyperlinks together form the HyperCode Representation. The
HyperCode Representation is manipulated by HyperCode Operations(HCO).

www.manaraa.com

CHAPTER 2. THE COMPLIANT SYSTEMS ARCHITECTURE(CSA) 52

_ _ RepresentationEntity DomainJ f iAmain

Reflect

Reify

Execute Transform

Figure 2.4: Conceptual model of a HyperCode System

There are five basic HCOs which are provided by the ProcessBase HyperCode
System. They are listed as follows:-

• Implode - Implode is used to return a hyperlink into its original view after an
Explode(see below) operation. This also means that an Implode operation
cannot be applied to a hyperlink that has not been exploded.

• Explode - This operation exposes the details within a HyperCode represen
tation. For example, if the hyperlink is a reference to a value, the actual
value at the point of ’exploding’ the link is returned.

• Evaluate - Allows HyperCode Representations to be compiled into actual
executing entities in the Entities domain. The HyperCode representation
is compiled and then executed immediately if the compilation is success
ful. Depending on the result of the execution, a hyperlink to the result is
returned.

• Edit - This operation defines the types of code editing facilities that are
used to modify the HyperCode representation.

• GetRoot - This operation returns the Persistent root to the HyperCode
system.

www.manaraa.com

CHAPTER 2. THE COMPLIANT SYSTEMS ARCHITECTURE (CSA) 53

2.6 Sum m ary

The CSA approach provides an approach to constructing system architectures
that best meet the needs of the application. It is expected that a csa is sufficiently
flexible to support the type of evolution that has not been well supported in most
PSEE. This flexibility is provided by the separation of mechanism and policy
across the entire scope of implementation, ie starting from the application layer
through to the underyling machine. A definition of Generic Compliance for CSA
was detailed in order to provide a rigour to describe systems that are compliant
and those that are not.

The use of compliance in two other areas of research were also explored in
order to relate the use of compliance to other more concrete fields of research.
This study resulted in a refined definition of compliance where the terms pas
sive/structural compliance and active compliance were derived. This chapter has
also provided a definition of the policy needs which are required to be supported
by the mechanisms of a csa relevant to PSEEs. The CSA toolset were described
as they are used to construct the csa for a prototype PSEE. The results of this
construction experiment is described in the later chapters.

In summary the properties that are required in a system in order to achieve
Generic Compliance are:-

• Separation into mechanisms, policies and binding rules

• Binding rules in the form of upcall/downcalls to map policies to underlying
mechanism, mechanism to policies.

• A Layered view to ease the separation

The measure that determines compliance is determined by the existence of a
binding rule with bi-directional calls that maps all policies to at least one or more
underlying mechanisms.

A definition of Dynamic/Active Compliance was also provided which required
a system that has Generic Compliance to be coupled with a meta-process that
monitors and dynamically attempts to reconfigure itself in order that it will con
tinue to be compliant to the needs of a changing application. The CSA project
provided the initial informal definition of Compliance and the CSA toolset. The
derivation of the formal model as reported in this chapter and the further proto
type development through the use of the CSA toolset which is detailed in later

www.manaraa.com

CHAPTER 2. THE COMPLIANT SYSTEMS ARCHITECTURE(CSA) 54

chapters are work completed to support the hypothesis described in chapter 1.

www.manaraa.com

C hapt er 3

T he 7T-SPACE Language

3.1 In troduction

Process models are described by a notation that is normally called a process
modeling language(pml). This also means that a pml is the mechanim by which
a PSEE is customised to enact a specific process model. A pml is thus a vital link
that enables any form of process enactment on any useful PSEE. In this section,
the 7T-SPACE ADL is described. 7T-SPACE is a component-based Architecture
Description Language (ADL) that is based around the 7r-calculus[53, 54] with
additional language constructs for specifying components, connectors and their
dynamic behaviours.

This chapter starts by describing the key attributes offered by the use of an
ADL and the benefits that they provide for constructing dynamic systems. As the
7T-SPACE ADL is based on the 7T-calculus, a basic description of the calculus is
provided in order to provide an understanding of how it has been incorporated into
the 7T-SPACE ADL. This chapter will also provide some details of the additional
core ADL constructs and operations provided by 7T-SPACE with emphasis on
how they provide an architecture-centric approach coupled with the 7r-calculus
process algebra to provide some rigour for specifying and constructing evolving
process support applications. The 7T-SPACE operations for supporting evolution
will be described with an illustration of a example evolution that was originally
described in [18]

55

www.manaraa.com

CHAPTER 3. THE w-SPACE LANGUAGE 56

3.2 O verview

Software Archictures [82, 83] is a progression from the work arising from the need
to structure software as a hierarchy[25, 65, 66].

Parnas[67] described the approach of developing program families where sets
of programs are constituted of programs where it is worthwhile to firstly classify
their common properties and then determine their special properties of individual
members. The concept of modules arguably formed the basis for components[92]
and module interfaces the connect ors\2]. However, both components and con
nectors are conceptual constructs where the focus is on the architecture of the
system rather than implementation details. Cszyperski[92] describes a compo
nent as a unit for independent deployment, a unit of third-party composition and
that it has not state. These properties allows a component to be self-contained
and a generic unit where the only way to interact and configure the component
is via its interface. Connectors describes the interaction relationships among the
components.

Shaw and Garlanl[81] discovered that software architectures are often built
up by following a certain style of combining the individual components and con
nectors. Example styles are the pipe-filter and client-server styles.

An Architecture Description Language(ADL)[44] is used to describe a soft
ware architecture. In general, this means that the language is used to specify
components and the interactions between them. Medvidovic [50] provides a good
classification and explanation of how an ADL is different from other languages. He
claims that the differences with other languages such as programming languages,
Interface Modeling Languages(IML) and Object 0 rien ted (00)[ll] notations lies
in an ADL’s focus on a conceptual architecture and explicitly treating connectors
as first class entities.

www.manaraa.com

CHAPTER 3. THE 7r-SPACE LANGUAGE 57

3.3 tt-SPA C E

7T-SPACE1 additions to the 7r-calculus are in the form of introducing ADL con
structs and wrapping up the specifications to specify the properties of those con
structs. As such the benefits of the 7r-calculus specification are retained and used
within the context of architectural components.

3.3.1 T h e 7r-calculus as used in 7T-SPACE

7r-calculus[53, 54] provides a simple notation with powerful semantics that pro
vides the rigour that is useful for constructing process based applications. The
basic concept is that of a name. Names reference values which could either be
processes or channels which allow the interaction between two different processes.
Milner argues that the 7r-calculus was designed to facilitate the modeling of sys
tems with concurrent processes and the interactions between them. The concept
of mobility allows channels to be treated as entities that can be sent along other
channels in the 7r-calculus.

There are other properties such as bisimulation, abstractions, concretions de
scribed by Milner. However, these properties will not be dealt in this thesis as
they are not relevant within the scope of its use in the 7T-SPACE that is used.
This section only provides a description of the 7r-calculus which is defined and
used within the context of the 7T-SPACE language.

Prim itives

Every process and channel can be denoted by a name. Processes have behaviours
which are specified by the 7r-calculus. Channels supports the interaction between
the processes by allowing the sending of messages between between difference
processes.

Operators

Operators operate on the primitives.
The following are the 7T-calculus notations used within the 7T-SPACE language.

1The 7T-SPACE language was created by the University of Savoie at Annecy. The refine
ments of the language were done over the course of various collaborations with the Informatics
Process Group within the Department of Computer, University of Manchester. This section
thus describes a refinement of the language that was presented in [18]

www.manaraa.com

CHAPTER 3. THE tt-SPACE LANGUAGE 58

For the following examples, we assume that P, Q and R are names of processes,
and a and b are names of channels and x and y are just names which could be of
any type that is valid in 7r-calculus.

• Prefix operator (•)
The prefix operator Process followed by another process.

P • Q means that process P executes before Q

• Parallel operator(| |)
This operator allows concurrent processes to be executed

P . (Q\\R) means that Q and R can execute at the concurrently indepen
dently of each other after the completion of P

• Conditional/Sum operator (+)
The conditional/sum operator describes a sequence of processes where ei
ther one can be executing. There is no concept of priority on which one is
executing.

For example: P • (Q+R) means that either R or R can be executing after
P completes

• Success operator ($)
This operator is used to specify the condition when a process has succesfully
completed its execution and is in a stopped state.

For example, P • $ means that after the P completes its execution, the
process has completed its execution.

• Renaming operator (/)
The result of this applying this operator is that occurences with the name
of x are replaced by y within the scope of the operation.

For example, x / y means that all of x is renamed to y. Renaming is usually
in order to allow names to match. This is usually necessary for the send
and receive operations.

• Send operator(channel <name>)
This is a channel operation which sends an entity to another. The receiving
channel that receives the entity sent will have the same name with the send
channel.

www.manaraa.com

CHAPTER 3. THE tt-SPACE LANGUAGE 59

For example, a <x> means that a message with the name x is sent via
channel with a name a.

• Receive operator {channel(name))
This operator allows a channel to receive an entity. The entity is sent via the
channel name. As the receive operation is essentially a blocking operation,
they are often used as a way to synchronise the execution of concurrent
processes where a receive operation is used like a guard or condition to
begin its execution.

For example, b(x) means that a message is received via channel b. The
receive channel can only receive an entity from a send operation with with
the same operation name. For this example it means that there must be an
corresponding b <y> send operation.

3.3 .2 7T-SPACE ty p es

Prim itive Structures

7T-SPACE types can be described in terms of base types and aggregate types.
Base types are the most basic level which borrows some of the its definitions
from 7r-calculus. Base types consists of Entities, Channels and Operations.

Aggregate types are composed of a combination of base types. These includes
Port, Behaviour, Component, Connector and Composite.

Each type is described in detailed with some examples in the following sec
tions.

Process Entities

A process entity is the most basic structure that can be specified. Its type can
be can that of any type that is valid within the 7T-SPACE language. The initial
7T-SPACE which was essentially used for specify properties of systems did not
provide a set of types. Every construct in the 7T-SPACE language is just con
sidered as an entity. Entities are thus only differentiated by their names. This
concept of names was borrowed from the 7r-calculus.

www.manaraa.com

CHAPTER 3. THE 7t-SPACE LANGUAGE 60

Channels

Channels are the most basic entity that allows processes to send messages with
other processes. Channels in 7T-SPACE are similiar to those that have been
defined within the 7r-calculus.

Operations

Operations provide a way to specify a computation. Their behaviour is specified
using the 7r-calculus. The inputs to the operations are defined by the parameters
that are passed to the operation. Parameters has associated access specifiers
which are defined as IN[ti/pe], O U T [type] and INOUT[ti/pe] for parameters
that are mean as inputs, output and both respectively.

An example of an Operation type is defined in the example below.

d e fin e O peration Type a b c (in [m l:Module] , o u t [m2:M odule])

■C

a b c[m l,m2] = a b c[m2,ml] + $

}

The operation type abc accepts takes two parameters where parameter m l is only
for input and m2 is the output. This example operation type takes in a variable
m l and returns it via the m2 parameter.

3.3 .3 A ggregates

Aggregate types are built from a combination of primitive types, Process Entities,
Channels and Operations. These are the component-based type abstractions that
provides an ADL element to the language.

Port

A Port type is an aggregate over a set of Channel types. It also contains an
associated 7r-calculus element for specifying the behavioural constraints of its
port.

A Port is specified in two parts. The first part specifies the name and type
of channels from which the Port is composed. The type of channels are variants
of the base types available in 7T-SPACE. The square brackets are used to specify

www.manaraa.com

CHAPTER 3. THE ir-SPACE LANGUAGE 61

the channel type. For example a channel that accepts a Module type is specified
as [Module].

The second part provides a specification in 7r-calculus over the behaviour
of that the set of channels. Effectively, the 7r-calculus specifies the allowable
behavioural constraints of the Port which are to be adhered to during component
composition.

The following illustration should make this clearer by defining an example
Port type.

d e fin e Port type R e q u e st[d a ta l: [M odule], data2: [M odule],
p a r i : Module, p a r2 :Module]

{
R eq u e st[d a ta l, data2 , p a r l,p a r2] = d a ta l< p a r l> . data2(par2) + $

>

Port type Request is defined as accepting channels datal and data2 and Mod
ules pari and par2. The behaviour constraint on Request is that it will send
Module par over datal before sending Module par2 over channel data2.

Behaviour

A Behaviour type is an aggregate over a set of Port types and Operations. There
are two types of Behaviours based on their use for Components or Connectors.
Behaviours that are used for describing the behaviours of Connectors do not have
Operation declarations within them.

The format of declaration for Behaviour follows that of the Port type aggre
gate but only Port types are accepted.
d e fin e Behaviour Type C h eck [su p p ly„ch eck :R eq u est[rece ive: [M odule],

sen d :[M odu le], module: Module, reply:M odule]

{
C heck[supply_check] = supply_check@ receive(m odule) •

do_check[m odule, r e p ly] •
supply_check@ send<reply>. C heck[supply_check]+$,

d o„ch eck [In [m od u le], O ut[rep ly]] { . . . }

>

Behaviour type Check accepts supply-check which is of Port type of with the
name of Request. The element names of Request are exposed clearly in 7T-SPACE

www.manaraa.com

CHAPTER 3. THE ix-SPACE LANGUAGE 62

in order to do name matching. The behavioural constraint as specified by the ir-
calculus defines that a module is received on the receive channel and then checked
using the do-check operation. The result of the do-check in the form of a reply
is then sent back via the send channel.

The do-check operation is specified within the Behaviour type but it is not
defined within the example as it contains the same structure as described in the
Operation Type declaration as defined before.

Com ponent

A Component type is an aggregate over a set of Port types and Behaviour types.
The Component type also consists of a 7r-calculus definition that specifies the
constraint.

Components thus provides an abstraction over Behaviours and Ports. An ex
ample definition of a component type is:-

d e fin e component type C h eck l[su p p ly _ ch eck :R ep ly [rece iv e : [M odule],

sen d :[M odu le], module: module, rep ly : Module]]

port su pp ly_check : R e p ly [r e c e iv e ,se n d , module, rep ly] | |

behaviour check: Check[supply„check]

>

Component Checkl is made up of a one port and a behaviour. Port supply-check
is bound to the behaviour check in this component.

Connector

A Connector type is an aggregate over a set of Port types and Behaviour types.
The declaration for a connector type is similiar to that for a component with the
only difference being that their definition cannot refer to or contain an Opera
tions declaration within them. The reasoning behind this is due to the fact that
Connectors do not have any behaviours. If there are any behaviours, they are
supposed to be routed to another Component.

www.manaraa.com

CHAPTER 3. THE ir-SPACE LANGUAGE 63

Com posite

Composite types are aggregates over a set of Components and Connector types.
The idea of a composite allows sets of pre-defined components and connectors to
be specified.

3.3 .4 O perations on C hannels

The operations on Channels are derived from the operations of 7r-calculus as they
have similiar semantics. There are however minor syntactic differences. The
types of operations on channels are the send and receive, and attach, reattach
operations and the renaming operations. They are detailed with some examples
of their syntax. In the examples, channeLa and channeLb are names with channel
types and msg is the name of an entity which is used as a parameter.

1. Send ((c/mrmd)), Receive ((receive))

• send
The send has the following form. channela<msg> The result of this
specification is that an entity abc is sent via Channel channel, a

• receive
channeL6(abc) Receives an entity of abc via Channel channel, b

2. detach, attach, reattach operator
These operations provides the equivalent property of mobility in 7r-calculus.
Bound channels are ’moved’ across different channels by detaching, at
taching and reattaching to different channels.

The a tta c h operation has the following format:-

a tta c h channel-a to channel-b

The result of this attachment is that channeLa and channeLb will be a t
tached which means that a send on channeLa will result in an entity being
sent to channeLb and vice versa.

3. renaming operator(/)
Renaming of channels works like the same with renaming any entities. It
has the following format.
channe l-.a/ channe l-b

www.manaraa.com

CHAPTER 3. THE iv-SPACE LANGUAGE 64

where the occurences of channels with the name of channeLa are replaced
by channeLb

All occurences of channel, a are renamed to channel_b and thus any refer
ences to channel_b are actually refering to what was defined as channeLa

3.3 .5 O perations on th e Aggregates ty p e

The operations that operate on Aggregates are provided in order to compose a
set of components and connections together and to define their behaviours to
support evolution.

The compose operation

This operation composes components and connector together to form a composite.
The result of a composition is a component which is self-contained if all the ports
in the connectors and components are attached. If there are any ports with
channels that are not attached, they will form the channels for the resultant
component.

The specification of a Compose operation consists of two parts. The first part
gives the type of components and connectors that are to be supported. The second
portion, which is specified after the where keyword, allows the specification of
how the components and connectors are composed together. The specification are
used to specify the way the ports within the components are attached together.

The following example of a compose operation uses some new names and types
in addition. They should be self-explanatory,

compose aComponent

aComponentA:ComponentTypeA I I
aConnectorB:C o n n ec to rT y p eB [ca ller [rece iv e /sen d , s e n d /r e c e iv e] ,

c a l le e [s e n d /r e c e iv e , r e c e iv e /se n d]

aComponentC: ComponentTypeC

where
a tta c h aComponentA@request_check to aC onnectorBO caller

a tta c h aComponentB@supply_check to aConnectorBO callee

>

www.manaraa.com

CHAPTER 3. THE 'k-SPACE LANGUAGE 65

A composite aComponent is composed of two components and a connector.
aConnectorB has is made up of two ports caller and callee. Each of the caller

and callee ports has two channels each, called receive and send. The name of
receive channel is renamed to send and the name of the send channel is renamed
to receive on the caller port. This is done so that the names will match when
the request_check port is attached to the caller port of aConnectorB.

The second portion of the definition which is provided after the where key
word specifies that aComponentAB request-check port is attached to aConnectorB

caller port.

3.4 Support for D ynam ic E volution

7T-SPACE provides additional constructs for supporting the dynamic evolution
at the component level. Evolution can either be specified directly, ie meaning
that the evolution is just going to happen or can be specified based on certain
conditions, ie event based depending on some conditions being achieved. The first
involved direct evolution whereby there are no alternatives where as the second
provides a more grey area whereby the evolution might not be according to plan
depending on the different inputs.

The decompose, recompose and replace operation

7T-SPACE constructs can decomposed into their original form before composi
tion. This compositional approach provides a very powerful paradigm that allows
components to be built and managed in an incremental manner. The decompose
operation has to be specified within a compose operation and the operation can
only be applied to a component that is a composite.

Reusing the previous example as illustrated for the compose operation, the
following example shows how the original component is recomposed into a new
component. This example introduces a new component and connector aptly
named aNewConnector and aNewConnector respectively,
compose aNewComponent

■C

decompose aComponent | |
C3: ComponentTypeD

www.manaraa.com

CHAPTER 3. THE ir-SPACE LANGUAGE 66

where

r ep la ce aComponentA by C3
recompose (C3, aConnector, aComponentC)

>

A new component, (75, and type, ComponentTypeD is introduced during the
composition of component aNewComponent. aNewCom ponent is constructed
from aCom ponent but with a new component C3 which is of type Component-

TypeD.

The dynam ic (7r) operator and, where and whenever, constraints

The dynamic operator allows a dynamic number of processes to be specified. For
example if a certain component A is supposed to have an indeterminate number
of instances, it will have a name An. Constraints, conditions that will invoke
other operations when the conditions specified are met. These constraints are
specified within the compose and decompose operations. Taking the previous
example into consideration, we will now specify a dynamic connector C2 and
dynamic component (75.
compose aNewComponent

{
decompose aComponent j I

C27r: ConnectorTypeB | |

C37T: ComponentTypeD
where

rep la ce aComponentA by C37T

recompose (C3, aConnector, aComponentC)
whenever

new C37T new C27r
new C2 7r a tta c h C37r@supply_ch.eck to C27r@callee

>
The behaviour is similiar to that as described in the previous example except

that whenever a new (75 is created, a corresponding new C2 connector is created
and bound to the new C3.

www.manaraa.com

CHAPTER 3. THE n-SPACE LANGUAGE 67

3.5 Sum m ary

This chapter described the 7T-SPACE ADL by firstly describing the relevant struc
tures that were derived from the 7r-calculus. The 7T-SPACE additions that provide
the abstractions required of an ADL language are then described in terms of the
entities and operations available. 7r-SPACE’s constructs that were designed to
support evolution by way of applying the composition and decomposition opera
tion on constructed components.

However, it must be noted that the 7T-SPACE language described in this chap
ter does not assume an enactment component. There has been various attempts
to create equivalent models by hand in a simulation language, PICT and a Pro
cess Modelling Language, PML [18] but there was no 7T-SPACE abstract machine
that supports the enactment of tt-SPACE models. This task will be undertaken as
one of the investigation to create a csa-based PSEE which allows some enactment
of tt-SPACE models.

Some refinements to 7T-SPACE in order to prepare the specification language
for enactment, ie compilable and then for enaction, has been made. This work
is described in chapter 4 and its complete BNF and Code Generation rules are
documents in appendix A.

www.manaraa.com

C hapter 4

Language C om pliance

4.1 Introduction

The definition of Generic Compliance that was provided in chapter 2 applies to
the system as a whole. A system is often composed of different layers where
each layer can then subsequently realised to be composed of a set of interacting
components. In the case of a csa-based system, this set of interacting components
are defined in terms of the mechanisms, policies and the binding rules between
them. These basic components of a csa-based system were described in chapter
2 .

This chapter explores the use of compliance within the language layer where
process models are specified using a particular PML that was derived from the ir-
SPACE language[18]. 7T-SPACE was defined as a specification language based on
the 7r-calculus by LLP/CESALP Lab, ESIA, University of Savoie at Annecy. A
more detailed description of specification 7T-SPACE was provided in chapter 3. A
description of the refinements that were made in this research in order to allow the
7T-SPACE to be compiled is firstly described. After which, a distinction is made
between the original tt-SPACE language that is described in chapter 3, hereby
known as Specification n-SPACE,&nd Enactable tt-SPACE , which essentially is a
language derived from Specification tt-SPACE with further refinements to make
it machine compilable and enactable. The 7T-SPACE language was selected as the
PML due to several reasons. They are listed here:-

1. 7T-SPACE is an formal ADL which is based on the 7r-calculus
The formality provided by the ADL provides the ’hard’ engineering ap
proach.

68

www.manaraa.com

CHAPTER 4. LANGUAGE COMPLIANCE 69

2. Support for evolution through the introduction of dynamic operations for
composing and decomposing systems
This feature is itself compatible with the CSA view to achieve compliance
where a system can be evolved by composition and decomposition of com
ponents which together make up the system.

A definition of language compliance will also be given that will be used as the
basis to measure the compliance of the resultant Enactable 7T-SPACE language.

At this juncture, a clarification of the relationships between the languages is
required. The original 7T-SPACE, now termed as Specification 7T-SPACE, is an
ADL which was designed for specifying highly evolvable system architectures.
Enactable 7T-SPACE is derived from Specification 7T-SPACE in order to refine it
into a language which is compilable and thus enactable. Being enactable, the
Enactable 7T-SPACE language thus forms the Process Modeling Language(PML)
which is used for writing enactable process models. The Enactable 7T-SPACE
language is compiled into a base language called ProcessBase. ProcessBase is
compiled into PBAM opcodes that are executed with the ProcessBase interpreter.

4.2 D esign o f th e enactable 7T-SPACE Language

The design of the enactable 7T-SPACE language was mainly driven by refinements
made to the original specification 7T-SPACE language to yield an equivalent en
actable format that is suitable for compilation. As this enactable language is
designed around the recursive-descent compiling approach [23, 1], a short descrip
tion of the approach is firstly provided. A summary of the refinements that were
made to the Specification 7T-SPACE language in order to construct the compiler
for the Enactable 7T-SPACE will then be given.

4.2 .1 R ecursive D escen t C om piling

A recursive descent parser is one of the simplest to develop as each non-terminal
in the grammar can be mapped onto a corresponding recognition routine. It
is so named as the parsing of a language is performed in a top down manner
by recursively breaking down a sentence and descending into the corresponding
recognition routines for each language construct. This also makes it relative
easy for implementing type checking routines as type checking can be applied

www.manaraa.com

CHAPTER 4. LANGUAGE COMPLIANCE 70

during the parsing phase. As such the compiler for ProcessBase and the reflective
compiler was implemented using such an approach. For this experiment, the
decision was made to reuse the core of the compiler so that the compiler can be
easily incorporated as a reflective compiler within the PBAM.

The task of writing the parser for a context free language that has been defined
in the Extended Backus Naur Format (EBNF) is also sufficiently straightforward
where each terminal symbol in the language can be recognised by the lexical
analyser and each non-terminal symbol can be recognised by recogniser functions
that can be invoked recursively. The abstractions that are provided by the recog
niser functions also helps to manage the complexity of constructing a compiler.
Meta-symbols of the EBNF such as ’|’ and each representing conditional and
repetition operations on the symbols respectively, can be easily translated into
their equivalent constructs in any programming language.

In addition, the focus on recogniser units also means that at each valid step of
the syntax parsing process, the recogniser is able to invoke specific semantic and
code generation actions based on the type of symbols that were recognised. This
however implies that there is no backing up during the parsing process and that
each step of the parser must be deterministic as the recogniser function that is
invoked will be determined on the current token that is being read. This places a
constraint on the language in that the language must be LL(k) compliant where
the k is the number of lookahead symbols that will influence the invocation of
which recogniser unit.

In contrast to other parsing strategies, another key property of a recursive
descent parser is that an explicit syntax tree or parse trees is not generated
during the parse phase. A snapshot of the syntax tree is only implicitly reflected
when viewing the invocation trace of the recogniser functions. For recogniser
functions that have been written in a language that uses a stack-based storage
for storing the activation records of functions, the current structure of the syntax
tree can thus be seen in the execution trace of these activitation records.

4.2 .2 L exical R efinem ents

Specification 7T-SPACE was designed as a language whose focus was on specifying
component properties with sufficient rigour such that the resultant models that
were specified in 7T-SPACE could be checked and reasoned about, if possible
by machine-based model checking tools. This specification-biased approach is

www.manaraa.com

CHAPTER 4. LANGUAGE COMPLIANCE 71

directly apparent from the use of mathematical symbols that are usually hard, if
not impossible, to represent in a text-based programming notation.

To allow the language to be parsed, some lexical refinements were required in
order to make the language easier to specify in a textual format that is supported
by a computer. This meant that all the text, including special symbols are
assumed to be limited to the ASCII standard.

The following list shows the lexical refinements that have been made to the
Specification 7T-SPACE language

• Reserved words
Reserved words are tokens in the language which cannot be used as identi
fiers or names. Some reserved words in enactable 7T-SPACE are as follows:-

d e fin e component connector op era tion compose where whenever

• Constants/Literals
Specification 7T-SPACE did not specifically have any pre-defined constants
or literals. As such the assumption was made that the constants/literals
will be implemented based on the constants/literals that are supported by
the base language on which the 7T-SPACE is to be implemented. In this
experiment, the base language was ProcessBase.

• Special Characters
All special characters where there is a corresponding representation in
ASCII text were retained. An example are the angled brackets, < > , that
were used for the send operations and the round brackets, O, that repre
sents the receive operation in 7T-SPACE.

• Identifiers - names
As everything is basically defined as having a name in 7T-SPACE, enactable
7T-SPACE names are composed of characters that are of alphabet type and
the underscore character. The names must also not be the same as any of
the already defined reserved words.

4.2 .3 S yn tactic R efinem ents

Syntactic refinements are changes that were made to the syntax of the specifica
tion 7T-SPACE language so that a compiler could be constructed. There are two

www.manaraa.com

CHAPTER 4. LANGUAGE COMPLIANCE 72

factors that directly affected the design of the syntax for the enactable 7T-SPACE
language.

The first factor is due the approach of constructing the compiler. The decision
to construct a recursive descent parser meant that that the language had to be
made to be at least LL(1).

The second aim was to adhere as closely as possible to the specification t t -

SPACE language. This was so that the enactable 7T-SPACE language could utilise
planned model checkers and reasoning tools with only minimal syntactic changes.
These tools were expected to be available from other research laboratories that
were briefly mentioned in the paper on 7t-SPACE[18]

In order to achieve both the above-mentioned aims, the following approach
was followed:-

1. Simplify the language so that it is possible to construct the compiler within
the limited time available for the experiment on constructing a csa-based
PSEE

2. Introduce additional language constructs that add enactable elements to
the basic specification 7T-SPACE language

Following this approach, some specific syntactic refinements were made to the
specification 7T-SPACE language which resulted in the design of the enactable
7T-SPACE language. Some of the more interesting refinements are listed below:-

1. Removals

(a) ’extends’ keyword from all the type definition
’extends’ allows a type definition to inherit the properties of its parent
type. The decision to discard the ’extends’ keyword in the grammar
was mainly motivated by the need to simplify the virtual machine
design for the language. Inheriting the properties of previously defined
objects might be a good facility to have in the future, but for the
current experiment, this facility is not important for constructing a
csa-based PSEE.

(b) composite type
The composite type is composed of components and connectors. The
original intent was that when a composite type is instantiated, a whole

www.manaraa.com

CHAPTER 4. LANGUAGE COMPLIANCE 73

set of components and connectors will be created and linked follow
ing the specification within the composite. However, the result of
this instantiation is still a component as 7T-SPACE is a compositional
language. The only justification for retaining the composite type is
to enable the language to identify which components are themselves
composed of other components and connectors. This however can be
implemented by decomposing the component itself and then testing
for the existence of subcomponents.

2. Additions

(a) Annotations
Annotations were added to the language in order to provide the spec
ification of enactable elements that were not present in specification
7T-SPACE. Annotations are so-named as they are introduced as a meta
language that does not require any major structural changes to the
specification 7T-SPACE language. Annotations introduced some im
portant facilities which provide the basic foundation of the enactable
w-SPACE language. Some key facilities are:-

• values/literals
Specification 7T-SPACE provides the notion of names to refer to
any basic components within the language without any syntax
which allows a name to be assigned a certain value. In order
for values to be assigned to identifiers, the following syntax is
introduced
l e t identifier <- value

• type instantiation to the language
Specification 7T-SPACE provided language constructs for defining
the basic types that are available in the language. However, there
are no explicit constructs that allowed types to be instantiated.
Type instantiation was thus introduced and has the form of
typenamei parameter, . . .)
where a parameter is made up of a pair of parameter name and
value with the following format
parametername<~ value
Each instantiation will result in the instance of that type which

www.manaraa.com

CHAPTER 4. LANGUAGE COMPLIANCE 74

can be assinged to an identifier.

• expressions
Expressions for the base types of ProcessBase were introduced.
This includes string operations for the creation, concatenation
and comparisons of string types and arithmetic operations for the
addition(+), subtraction(-), division(/) and multiplication(*) of
integer types.

In order to ensure that the Annotations function more as a meta
language that utilises the definitions in 7T-SPACE, some guards were
introduced so that Annotations will be parsed differently. One key
benefit from this approach is that the changes to the 7T-SPACE are
kept to a minimum and that the work to parse out the annotations
is thus simpler. Annotations are specified within guard symbols that
start with <°/0ps and ends with %ps>.

Table 4.1 shows an illustration of a component definition and its asso
ciated Annotation where the component is instantiated as a value and
bound to a name.

(b) Local variable declarations within type definitions
Specification 7T-SPACE did not require local variables to be explicitly
defined within any type definitions, as the names of the local variables
are either implicit in the type definition parameter header or within
the definition. These variables are required for enactable 7T-SPACE to
allow the compiler to deal with scoping issues. Local variable declara
tions were introduced into the Port and Behaviour types.

Table 4.2 shows an example definition of the Specification 7T-SPACE.

Explicit local variable declarations were introduced to facilitate a sim
pler compiler design. Furthermore, explicit local variables also improve
the clarity of a specification hence these changes were subsequently in
corporated into the Specification 7T-SPACE language in Annecy.

3. Miscellaneous refinements
Even though the following list of refinements did not result in major changes
to the syntax, they did have some influence on design decisions about the
compiler.

(a) Communication Channels - s e n d o and receive()

www.manaraa.com

CHAPTER 4. LANGUAGE COMPLIANCE 75

Port and behaviour definitions in 7T-SPACE
d efine port type R equest[request: [s t r in g] , r e p ly :[s tr in g]]
{

R equest[request, reply] = request<service>*
r e p ly (r e s u lt)*
R equest[request, r ep ly]+$

3j___
define behaviour component type ClientW ork[request: [s t r in g] ,

r e p ly :[s tr in g]]

s e v ic e :s tr in g , r e s u l t :s tr in g ,
internalC om pute[in[Service:s tr in g]]{p r in t ln (S e r v ic e)} ,

C lientW ork[clientport]=internalC om pute[service]•
clientport© request<service>*
client@ reply (r e su lt) • ClientWork [c lien tp o rt] +$

h ___
A nnotations for instantiating port and behaviour values
<%ps

l e t C lientPort <- Request(request < -[""], rep ly <- [""]);
l e t ClientBehaviour <- ClientWork(c <- C lie n tP o rt);
l e t C lient_Instance <- C lient(p<-C lientP ort,b<-C lientB ehaviour);

°/ops>

Table 4.1: Annotations in enactable 7T-SPACE

www.manaraa.com

CHAPTER 4. LANGUAGE COMPLIANCE 76

Specification 7T-SPACE
define behaviour component type ClientWork[
c lien tp o r t: R equest[request: [s tr in g] , r e p ly :[s tr in g]]
]

C lientW ork[clientport] = internalC om pute[service]•
clien tport© request<service> *clien tport© rep ly(resu lt)*
C lientW ork[clientport] + $

>___
Enact able ir- SPACE
define behaviour component type ClientWork[
c lien tp o r t: R equest[request: [s t r in g] , r e p ly :[s tr in g]]
]
{
service: string, result:string, ! local variables decl
internalCompute[in[Service:string]]{println(Service)}, !local op decl

C lientW ork[clientport] = internalC om pute[service]•
clien tport© request<service> *clien tport© rep ly(resu lt)*
C lientW ork[clientport] + $

>

Table 4.2: Local variables in Enactable 7T-SPACE

www.manaraa.com

CHAPTER 4. LANGUAGE COMPLIANCE 77

Channels in Specification 7T-SPACE
channel< parameter>

Channels in Enactable 7T-SPACE
channel< parameter >

Table 4.3: Differences of the textual representation of communication channel
operations between specification and enactable 7T-SPACE

The overhead bars over the channel names in specification 7T-SPACE
will be hard if not impossible to type using an ASCII-based text ed
itor. It is also apparent that they are not required to determine if a
send or receive operation is specified for a channel. The angled, <> ,
and round, (), brackets characters that appears right after the chan
nel names are sufficient to indicate if the channel operation over the
channel name is sending or receiving a message. To be able to parse
this syntax though required the parser needs to be LL(2) compliant
as the channel name and the brackets need to be parsed to determine
the type of operation.

Table 4.3 shows how a send operation is specified for a channel 7r-
SPACE specification in the original and enactable format.

(b) Separation of Behaviours types for Components and Connectors
There were different constraints on the behaviour types that were
meant to be used for Component types and those that were meant
to be used within Connector types. Behaviours that were meant to be
used by Connector types are not allowed to have embedded operations
defined within them. The rationale is that connector behaviours should
be limited to specifying only processes that operate on communications
channels. The simplest solution is to introduce a new behaviour type
for each component and connector type. This is achieved by adding
the extra keyword ’component’ and ’connector’ in the behaviour type
declaration syntax in order to differentiate the behaviour types.

Table 4.4 illustrates the difference between the original 7T-SPACE and
the refinements.

The result of these refinements made on the language forms resulted in a

www.manaraa.com

CHAPTER 4. LANGUAGE COMPLIANCE 78

Behaviour definitions in Specification 7T-SPACE
d efin e behaviour type aBehaviourforComponent[]

define behaviour type aBehaviourforConnector[]

Behaviour definitions in Enactable7r-SPACE
d efin e behaviour com ponent type aBehaviourf orComponent []

define behaviour connector type aBehaviourforConnector[]

Table 4.4: Differences of the behaviour definitions for components and connectors
between specification and enactable 7T-SPACE

grammar for the Enactable 7T-SPACE. The complete grammar in EBNF is given
in Appendix A.

4.2 .4 Sem antic R efinem ents

The semantics of a language describe the actual behaviour of each language con
struct that is represented by each grammar rule. The result of the semantics is a
set of specifications that can be used to produce equivalent code generation rules
that can be implemented on top of a virtual machine. During the time when
the language was constructed, the enactable element of the language was still
constantly being refined and thus there was no formal notation of the semantics
except those derived for code generation. The understanding of the semantics are
derived from the enaction characteristics as displayed by the generated code. The
full code generation rules are provided in appendix A. Some semantic rules for
Enactable 7T-SPACE are shown and described in narrative form in the following
list:-

1. Semantic definitions for each construct of Enactable 7T-SPACE

(a) Channel - A channel is a primitive along which messages can be sent.
There is no behaviour that can be defined by the channel itself. Send
and receive operations operate on a channel but they are specified only
in the other Aggregate structures.

(b) Ports - A port is composed of a set of Channels and the 7r-calculus

www.manaraa.com

CHAPTER 4. LANGUAGE COMPLIANCE 79

specification describes the pattern of communication behaviour on the
channels.

(c) Behaviour - Behaviour types are constructed based on specifiic Ports
types. They also provide optional specification that defines their be
haviour in terms of a 7r-calculus notation that specifies how operations
and the channels within the Ports can interact.

(d) Component - The component structure is made up of Ports and Com
ponent Behaviours. They can also include locally defined embedded
operations.

(e) Connector - A connector is composed of Ports, Connnector Behaviours
that operate on the channels of the Ports.

(f) Operations - Operations are like functions that can be written in the
base language. Originally 7T-SPACE specifies the Operations using
the 7r-calculus but this was changed when designing the Enactable tt-
SPACE. Operations defines simple behaviours that are easier to specify
using a programming language. This allows 7T-SPACE constructs to be
a structuring notation and the ProcessBase language to serve to im
plement enactable units. Operations in 7T-SPACE thus serve as hooks
from the structural portion of 7T-SPACE to the enactable portion pro
vided by the underlying base language which in this case is that of the
ProcessBase language.

2. Type rules
It was decided that type rules for Enactable 7T-SPACE should only be spec
ified on the type of data that is sent over the channel primitive and on
the operations that operate on the channel type. The main reason for this
was so that the approach would not be bogged down by having to define
a complete type system for 7T-SPACE since the original 7T-SPACE did not
have any explicity types. The end result was that, during parsing, there are
types for each 7T-SPACE construct defined but they are not checked due to
time constrains and also that its low relevance to this project.

• Universe of Discourse

— Base Types

(a) Scalar data type of int

www.manaraa.com

CHAPTER 4. LANGUAGE COMPLIANCE 80

(b) Type string is the type of character string
The following type constructors are defined in enactable 7r-
SPACE

(c) For any type T, channel[T], is the type of a channel that con
tains a value of type T.

— Type grammar

type void | int | string | channel[type]

— Type Rule

(a) channel type

r h T G Type, r h T not G void
r h channel[T] Type

(b) channel type construction

t, 7r h e : T
r, tt h [e] : channel[T]

(c) attach operation

t, 7r h ci : channel[T], t, 7r h e2 channel[T]
t, 7T h attach e\ to e2 : void

3. Semantic definitions for Annotations

(a) Instantiation operations
abc(param eter, param eter,. <.,parametern — 1, parametern)

where abc is the name of the 7T-SPACE component type that has been
defined previously and parameters are names of instantiated 7T-SPACE
components that are composed within the abc 7T-SPACE component
type.

(b) Variable declarations
l e t abc <~ 1
where abc is of type integer and assigned a value of 1.

www.manaraa.com

CHAPTER 4. LANGUAGE COMPLIANCE 81

(c) Basic operations
These operations are directly derived from ProcessBase and have been
included as a matter of convenience so that basic arithmentic and
string operations can be used instead of having to define them as 7r-

SPACE operations.

• multiplication *

• division /
• string concatenation +

4.2 .5 C ode G eneration

Code generation rules define the code that is generated for each syntactically
and semantically correct language construct. Each code generation rule provides
an implementation biased definition in the target computer language that must
preserve the semantics that have been defined for each language construct.

In general, the code generation rule for each enactable 7T-SPACE construct
consists of a Type Definition and its corresponding Instance Generator. The
structure is described as follows:-

• A Type Definition in 7T-SPACE is defined as a ProcessBase view type.
The general structure consists of the following fields with its corresponding
type:-

1. name:string - The name of the type is retained in this field.

2. typeidfint - This is an internal typeid that retains the type information.

3. list of parameters that are relevant to the type 7T-SPACE type -

• Instance Generator.
This is basically a ProcessBase function that accepts parameters that are
relevant to the associated 7T-SPACE type and returns an instance of the
Type Definition. The Instance Generator might also generate and then
bind the dynamic elements that are required when the type instance is
generated.

The code generation that is specific for each type of language construct will
now be described in detailed in the following sections.

A complete list of code generation rules for enactable 7T-SPACE is available
in Appendix A.

www.manaraa.com

CHAPTER 4. LANGUAGE COMPLIANCE 82

Prim itives

• Names - Everything in 7T-SPACE is referenceable by a name. Thus, every
entity, be it an instance or type, has a name associated with it. In order
to retain this name, every type defintion as defined in the code generation
rule has a name field of type string.

• Channel types - As they do not have any behaviour, channel types will only
result in a simple code generation that has a basic Type Definition and
Instance Generator.

Aggregates

The list of aggregate types in 7T-SPACE are as follows.

• Ports

• Behaviour

• Component

• Connectors

Each aggregate type is represented as a view type in ProcessBase and they
have the same format which is now described.

An example code generation rule for an aggregate type, in this case that
of a component type declaration is shown in the table 4.5. The complete code
generation rules for enactable 7T-SPACE is given in appendix A.

Both the type definition portion and Instance Generator portion of the defi
nition provides a ProcessBase equivalent that is designed to retain all the infor
mation required to achieve the semantics defined for the 7T-SPACE construct.

Type definitions provides the static portion and provide the relevant fields in
which to store the data. This data can be in the form of just basic field types in
ProcessBase or, if required, a location to a function which allows the attachment
of more dynamic components to the 7T-SPACE construct.

The Instance Generator provides the instantiation of the dynamic component
which binds actual instances of constructs in order to generate an instance which
can be manipulated and enacted. The code generation rule that is described
provides a lazy binding approach where the attributes in the behaviour are only
executed and bound during instantiation.

www.manaraa.com

CHAPTER 4. LANGUAGE COMPLIANCE 83

D efining a 7T-SPACE C om ponent ProcessB ase equivalent

define com ponent typ e Writer [. .]
{
port request_check:Request [. . ,] ||
behaviour w rite :Write[. . .]
}

// Type definition
type Writer is view[

typeTag : int;
r e que s t -C he c k: R eq u est;

write:W rite;
sta r t „behaviour:loc[fun()]]

!! Instance Generator
let gen_Writer < — fun(...)
{
let Writer_start_behaviour < —fun()
{ -
}
view (typeT ag < — com ponentTag,
w rite < — w rite,
start_behaviour < —
W riter.st art-behaviour)

}

Table 4.5: An example code generation rule that shows the type definition and
Instance generator in ProcessBase of a 7T-SPACE component

Executing U nits - Operations

Primitive executing units in 7T-SPACE are specified as Operations. A decision
was made to allow Operations to be specified in the base language, ProcessBase,
because operations are mapped directly to functions and parameters specified in
Operations are mapped onto the function parameter in ProcessBase.

Table 4.6 shows how the operation parameters are mapped to their respective
equivalent in ProcessBase.

4.2 .6 E n action Issues

The issues discussed here will form the enactment policies that need to be sup
ported by the mechanisms at the VM layer. The actual underlying mechanisms
that are needed to be provided by the layer of software that supports the enact
ment will be described in chapter 5.

www.manaraa.com

CHAPTER 4, LANGUAGE COMPLIANCE 84

O peration Param eter in 7r-SPACE
in access specifier

P r o c essB a se eq u iv a len t

define operation type anOp
[in[aParameter: aType]

type anOp i s v ie w fty p e T a g :in t;
aParam eter: a T y p e ;
o p e r a tio n .fu n :fu n ()
]

O peration Param eter in 7T-SPACE
inout and out access specifier

P r o c e ssB a se eq u iv a len t

define operation type anOp
[out [aParameter:aType],
inout [aParaneter2: aType]

type anOp i s v ie w [ty p e T a g :in t;
aParam eter: lo c [a T y p e];
aParameter 2: lo c [aType];
op eration _fu n :fu n ()
]

Table 4.6: Code generation rules for Operation parameters

Process enactm ent

The processes that are described within the enactable 7T-SPACE language are
viewed at two levels. The basic level includes the execution of the 7T-SPACE
constructs which are available in Specification 7T-SPACE. Another level supports
the additional processes that can be specified in the Annotations and Operations.

Some properties which can serve as policy information are:-

• Process thread priority

• Thread Control, Suspend/Resume, etc

Com munication

The communication policies are essentially derived from the needs to support the
operations on channels in 7T-SPACE.

The following are some properties which can serve as policy information:-

• Channels support the protocol of single send with multiple receives.

• Invocation of the receive operation on a channel results in a blocked state
on the operation until a message is received.

• Able to attach a channel to multiple other channels.

www.manaraa.com

CHAPTER 4. LANGUAGE COMPLIANCE 85

4.3 Language C om pliance

The previous sections detailed the actual design decisions that were applied and
the results of the design were illustrated as examples. The purpose of describing
the actual design of the language was to understand and identify how the model
of compliance can be applied.

To be compliant to the needs of an application domain, a language is required
to provide a set of underlying mechanisms that meet the policy needs required by
the supported application. Language policies are thus determined by its usage in
the application domain.

4.3 .1 C om pliance in 7T-SPACE

From mapping the basic components in their syntactic form to their correspond
ing enactable policies, the underlying mechanisms are then represented by the
semantic rules. These semantic rules are then further realised as a set of Code
Generation Rules which are implemented in the underlying base language. The
approach for constructing a compiler for a compliant language is thus similiar to
the approach for constructing any computer based language. The essential differ
ence lies in the fact that policies must be supported by the mechanisms provided
in the underlying language.

The only thing left to do is to determine if the enactable 7T-SPACE is compliant
is to attem pt to map all the policies to the underlying mechanisms that are
provided by the language.

Com ponents

A compliant systems must be represented as a set of P, M and ®. The following
lists the set of Policies P, Mechanims M and Binding Rule © that can be realised
with justifications.

1. P — The constructs in the 7T-SPACE ADL

2. M = The ProcessBase constructs that are designed to provide an enactable
element for each 7T-SPACE construct

3. © = The Code Generation Rules which maps each language construct in
7T-SPACE onto ProcessBase

www.manaraa.com

CHAPTER 4. LANGUAGE COMPLIANCE 86

Binding Rule

The binding rule must be described in terms of its downcall and upcall.

1. Downcall
The downcall is in the form of the invocation of the compiler. Policy in
formation are described in the form of the 7T-SPACE specifications and the
compiler flags that can be passed on to the compiler.

2. Upcall
Result of compilation forms the feedback from the compiler. The mech
anism information is reported as the types of compiler messages that are
reported from the result of compilation.

D eterm ination of Layer Compliance

In order to determine layer compliance, the Compliance function P can be used.
The needs of each policy which is a 7T-SPACE construct are met by an equivalent
construct in ProcessBase. As each 7T-SPACE construct has an equivalent grammar
rule, we can confirm that all the policies needs are met by the mechanisms that
are implemented as ProcessBase.

Thus the determination of compliance, which is made concrete by the con
struction of a compiler that implements the syntax and semantics as defined
earlier and the conceptual model is said to be compliant to the needs of the
policies.

Figure 4.1 describes the model of compliance as applied to the 7T-SPACE
language and its associated ProcessBase equivalent.

4.4 C riteria for Language C om pliance

In order to determine that the language is compliant to the policy needs of a
process model, the language will have to be used by a process model. In order to
determine language compliance, the mechanisms provided by a process modelling
language must fully support the policy needs of the process models.

The policy needs of a PSEE language and the mechanisms provided by the
7T-SPACE language are listed as follows:-

www.manaraa.com

CHAPTER 4. LANGUAGE COMPLIANCE 87

Physical View

7t-SPACE constructs

Components Ports

Connectors Behaviour

Channel Operations

tc-SPACE constructs

Compilation

Q.
EoO

Result

ProcessBase equivalents

Components Ports

Connectors Behaviour

Channel Operations

Compliance View

Components Ports
C

od
e

G
en

er
at

io
n

R
ul

es

Components Ports

Connectors Behaviour ----------------> Connectors Behaviour

Channel Operations <----------------- Channel Operations

D o w n ca ll

Policies ^ Binding
Rule

U p c a l l

Mechanisms

Figure 4.1: Language Compliance, Compiler and Language

1. Process Specification - As a process is the core entity of a PSEE, the ability
to specify a process is the most basic policy need required by a PSEE.
Process Specification will involve the specification of process behaviour and
process interaction.

The mechanisms provided by the 7T-SPACE language allows these abstrac
tions to be specified using abstractions such as Component, Ports and Be
haviours.

2. Constraint Specification - The behaviours of each process and their inter
actions can be structured according to constraints. Constraints must be
placed on the basic processes in order to provide a structure for the differ
ent behaviours that can be exhibited by those processes.

Mechanisms offered within 7T-SPACE utilises a form of 7r-calculus which
allows constraints on the constructs provided within the language.

3. Dynamic Evolution Support - This can be considered a special type of
Constraint Specification in that it is a type of behaviour that allows the
current behaviour of a process to be changed during its enactment.

www.manaraa.com

CHAPTER 4. LANGUAGE COMPLIANCE 88

The 7T-SPACE language provides support for evolution by introducing the
notion of composing and decomposing components and the ability to specify
the processes in respond to some evolution.

4.5 Sum m ary

This chapter detailed the work that was required to refine the 7T-SPACE language
into a form that can be compiled and thus enacted on a virtual machine. The
definition of language compliance within the context of a PSEE was initially pro
vided. The PML provides core constructs that allows the specification of these
policies. The use of 7r-calculus specification within the PML also provides the
facility for specifying the behaviour of the process enactment. Interactions be
tween the processes are provided by the synchronisation facilities of the operations
on channel. It should be noted that, this work was not an attem pt to redefine
a language that will execute 7r-calculus as this has already been attempted in
Pict[71].

A set of policy needs were also derived from the requirements that are required
for a PML. These were derived from the PSEE policy needs such as Process
Scheduling, Constraint Specification and Communication Handling which were
then described. This set of policy needs will be useful for the evaluation of
language compliance which is detailed in chapter 7. This evaluation can only
be done when the meta layer (above) and the abstract machine layer (below) is
constructed to see if the policy needs of the PML is supported by the underlying
mechanisms of the abstract machine. To be compliant to the layer above, these
policies with the underlying mechanisms must provide sufficient support for that
layer.

www.manaraa.com

C hapter 5

V irtual M achine C om pliance

5.1 Introduction

In order to execute the resultant ProcessBase code that was generated by the
7T-SPACE compiler, a virtual machine is required. This chapter begins by pro
viding a basic definition of the term Virtual M achineryM) and describes some
key attributes that are available in most conventional VMs. Examples of two
real-world virtual machines are then provided as illustrations of contemporary
designs. These illustrations are used as a basis for drawing out a summary of VM
features in order to highlight the differences of current VM designs to one that is
built to be compliant. The design of the csa-based 7r-SPACE/ProcessBase Virtual
Machine(7tPVM) is then detailed. The purpose of designing and constructing the
7rPVM is two-fold. The first is to explore the inherent properties of a virtual
machine that is constructed to be compliant to the needs to a PSEE application
and secondly to demonstrate how a compliant virtual machine can be constructed
using the CSA toolset. Essentially, the 7rPVM is based on a customised version
of the VM for executing PBAM opcodes.

5.2 V M D esign A pproaches

5.2.1 A D efin ition o f V irtual M achine

Before providing the definition of a Virtual Machine, another term needs to be
defined. An abstract machine is a processor design which is not meant to be
implemented as hardware. Abstract machines are often designed to execute an

89

www.manaraa.com

CHAPTER 5. VIRTUAL MACHINE COMPLIANCE 90

intermediate language that has been generated or used in a compiler or inter
preter.

Abstract machines can thus be defined in terms of the following:-

1. An instruction set - The instructions are usually designed to be of higher
level than the instructions set of a typical processor hardware. The reason
is that this will serve as an intermediate language between the underly
ing hardware and the supported higher level language. The instruction
set for an abstract machine is also known as the Abstract Machine Lan~
guage{ AML).

2. A set of registers - These are immediate memory locations that can be
used directly by the set of instructions. Registers that are defined in an
abstract machine need not have a corresponding register implemented in
the hardware.

3. A model of the memory - A description of the memory, for example if the
memory layout utilises a heap or stack model, that can be accessed by the
instruction set.

A Virtual Machine (VM) can thus be defined as an abstract machine for which
an interpreter is available for executing the language that is supported by the
abstract machine. In some instances, the term abstract machine has been used
interchangeably in place of the term virtual machine.

A VM is defined as a concrete software implementation of an abstract machine
that allows the execution of the supported abstract machine code. Popek[73] de
fined a VM as ”an efficient, isolated duplication of the real machine” . Using the
CSA toolset as an example, this would infer that the PBAM be the abstract
machine definition which was described in the PBAM manual[55] and the imple
mented interpreter, a software designed to decode and execute PBAM opcodes,
is the VM.

A key benefit of utilising a VM design is that it presents a consistent interface
to the supported application program. This is achieved by abstracting the main
features of the hardware such that an application program can be executed on
different hardware platforms without the need to be changed and recompiled if a
VM has been implemented on a particular platform.

A VM can also implement some features which the hardware or operating
system does not currently support. For example, most current hardware does

www.manaraa.com

CHAPTER 5. VIRTUAL MACHINE COMPLIANCE 91

not support automatic garbage collection that most contemporary computer lan
guages and their VMs such Java[43], Limbo[74], C # and ProcessBase[56, 55]
support.

To summarise, the relevant characteristics of VMs are:-

1. They are implemented in software in order to abstract away from the specific
hardware

2. They facilitate portability of bytecodes across different hardware platforms

3. The efficiency of the VM to execute code is important as slow execution of
object code will negate the the benefits of code portability.

5.2.2 C onventional V M s

The term “conventional” VM is now introduced and defined in order to differ
entiate it from that of a “compliant VM”. Conventional VMs are constructed
based on the assumption that they will cater for a selected group of applications.
The assumption is valid if the selected group of applications are static. However,
application needs are prone to constant change and new applications may also be
added to the original set of applications which brings about a need for change on
the VM. Most VMs are designed to support changes that are well-defined which
can be programmed into the VM.

Two current VMs will be described in order to explore why they are con
sidered as being conventional as they are tuned to cater for a ’generic’ set of
applications. The term ’generic’ however is a misnomer as they are based on the
set of applications that are currently known. A more appropriate definition of
conventional VMs are that they are tuned for a particular well-known class of
applications which makes them inappropriate for classes of applications where
their abstractions and needs are in a flux and are constantly evolving. Process
models usually belong to the later class of applications.

The Java V M

Java [43] was originally named the Oak project and is a platform designed by Sun
Microsystems to run on multiple devices that have small memory footprints. One
of the goals of Java was to achieve the goal of ’write once run on many platforms’.

www.manaraa.com

CHAPTER 5. VIRTUAL MACHINE COMPLIANCE 92

A VM is thus required in order to achieve this goal as writing a different compiler
to generate different code for each platform will be an extremely arduous task.

The Java platform is made up of a set of technologies which Sun labels as
a Java Software Development Kit(SDK)[52]. There are currently three editions
of the Java SDKs, Enterprise, Standard and Micro Editions, where each edition
is fine-tuned for different platforms with different levels of sophistication and
usage. Each SDK is made up of a set of development tools that includes the
Java compiler, profiler and libraries, and the Java Virtual Machine (JVM) which
includes the interpreter to execute compiled Java bytecodes.

Extensions to the language are made by adding new features to the core
libraries which are usually written in Java. Only major changes to the underlying
JVM, for example the addition of a Just in Time (JIT) compiler or other syntactic
changes to the Java language, will require a redesign and reimplementation of the
JVM.

This model assumes that the available underlying mechanisms are static even
though Java does provide support for the upcall in the form of Exceptions[51] in
the language. Exceptions are treated as a primitive Class in the Java Language
which allows an executing program to handle run-time errors that would normally
interrupt the flow of a program.

Exceptions can be viewed as a form of upcall which provides a feedback from
the underlying VM to the program. This feedback allows a more dynamic form
of customisation which allows different messages to be sent from the underlying
mechanisms to the policies implementing as Java programs.

The Dis VM

The Dis VM is designed to run on the Inferno Operating System from Lucent
Technologies. Inferno is both a small operating system and execution environment
for a wide range of devices and networks that is based on the ideas from the Plan
9[72]operating system.

The Dis VM utilises a Memory to Memory(MTM) architecture instead of a
more conventional stack based model. This architecture results in instructions
sets that are more natural to current hardware than the instructions sets for
stack based machines. However, the tradeoff is that the VM requires a more
elaborate interpreter engine in order to parse the instructions than when running
on conventional stack-based machines.

www.manaraa.com

CHAPTER 5. VIRTUAL MACHINE COMPLIANCE 93

The language used for writing programs for Inferno is called Limbo[74]. It
has a C-like syntax with some influences from Pascal. Even though it is in theory
possible to write Inferno programs in another language that can be converted
into Dis bytecodes, Limbo has the advantage of being designed ground-up for
Inferno. The use of other languages thus might result in an inability to utilise all
the features in Inferno.

A few features in Dis that stands out are:-

1. Automatic Garbage Collection - It uses a more simplified model which pro
vides a good balance between performance and efficiency.

2. Channels are treated as a primitive within the Limbo language

S um m ary of C o n tem p o ra ry V M s

Having described two contemporary VMs, a summary of similiar key features of
contemporary VMs can be derived. This list is used to highlight the different
approach that a compliant VM provides in contrast to one that has been built
using the conventional approach. This exercise also helps to reveal how a compli
ant VM can be constructed. The following is a summary of contemporary VMs
with the details of how each differs from one that we define as being compliant.

1. The nature of the instruction sets are usually very low level.
In the case of Java it is understandable as their only goal is to abstract
a generic set of processors to ease the porting of the JVM to different
platforms.

2. Most VMs are created to support the generic set of applications where their
properties are known.
This assumption means that the abstractions and the features supported by
the VM are often tuned and optimised for this set of applications. However,
this set of abstractions might not provide the set of mechanisms that will be
useful for all domains. For example the type of garbage collection scheme
that is embedded within the language is considered as a static entity which
is not replaceable or contains no way for the application program to be
notified of when the garbage collection is going to execute.

3. Most VMs are created as static monolithic structures with no provisions to
support the type of changes that would require more changes to the VM

www.manaraa.com

CHAPTER 5. VIRTUAL MACHINE COMPLIANCE 94

itself.
This is understandable in current contexts as a VM has to be efficient and
most VMs are not meant to be evolvable. Most methods of extending the
VM are usually limited to support changes that can be specified within the
supported language and are deemed as being ’safe’ to be changed without
breaking the assumptions that have been made on the VM. An example in
Java is that most of the libraries are implemented in Java itself. Java does
provide an interface, the Java Native Interface(JNI), that allows programs
to bypass the JVM altogether in order to make use of lower level system
mechanisms. However, being non-compliant, the underlying mechanisms
of the JVM cannot be customised or finetuned. These mechanisms might
be reimplemented using JNI and hence the original mechanism might be
bypassed and not utilised at all. In the extreme case, one might even use
the JVM but actually write another VM feature outside of the JVM using
JNI. If this is done, then the abstractions and features provided by the JVM
would have been negated.

5.3 C om pliance in V M C onstruction

A prototype was developed to construct a compliant VM for the policy needs de
fined for a PSEE. This required the use of an abstract machine that was designed
to support the notion of compliance. The PBAM is designed to be a highly con
figurable abstract machine that supports the CSA approach. As the features of
PBAM has already been described in section 2.5.2, this section focusses on how
the PBAM supports compliance and how being a csa-based VM allows the VM to
be highly configurable in order to support the construction of a csa-based PSEE.
A description of the specific customisations is provided in order to illustrate the
degree of flexibility provided by a compliant VM.

5.3.1 S up port for C om pliance in th e P B A M

The PBAM provides support for the construction of layered systems through the
use of libraries that provide different layers of abstractions.

A basic set of system functions are provided by PBAM which forms the default
set of core mechanisms available. This however can be extended to provide more

www.manaraa.com

CHAPTER 5. VIRTUAL MACHINE COMPLIANCE 95

mechanisms if this set of basic mechanisms does not provide sufficient system
functions for the intended application.

Describing it in terms of the csa approach, the specification of policy informa
tion is provided in the form of data values that can be specified using the entire
set of ProcessBase types.

Downcalls are provided as parameterised function invocations to the under
lying VM. This is similiar to any function call invocations implemented in other
VM platforms.

Upcalls are supported through the interrupt mechanism as supported by the
underlying VM. The interrupt mechanism provided by the VM can be customised
to be as low-level as required. In fact all interrupts that the VM can handle can be
made available. This means that every mechanism that the VM itself can make
use of, can also be made available to the policies at the higher layer. The benefit
of this is that all interrupts available to the interpreter, for example, interrupts
generated by the VM can be caught by the ProcessBase language. Run-time
exceptions such as type errors generated on the fly by the interpreter, are also
available to the application that makes use of the run-time mechanisms in the
VM.

In summary, the PBAM provides the basic support that is necessary to sup
port generic compliance. It can also be argued that most VMs do support this
type of generic compliance if we describe it following the approach above. Thus,
the ability of a VM to support the construction of a compliant system should
probably not be measured in terms of the four basic criteria for generic compli
ance. The ability of a VM to support a compliant systems approach is determined
by the level of customisation supported. In essence the level of customisation
supported by a VM denotes the available set of rules for binding policies and
mechanisms.

In the case of PBAM, the level of customisation provided by the VM goes
further than other real-world VMs as described. In addition to supporting the
extension of the VM via libraries, PBAM supports another form of reconfiguration
by allowing opcodes to be extended within the VM. This provides another level
of reconfiguration where the most primitive underlying mechanisms, the opcodes,
of the VM can be fine-tuned if required. This extra level of customisability allows
the VM to be more flexible than conventional VMs.

www.manaraa.com

CHAPTER 5. VIRTUAL MACHINE COMPLIANCE 96

5.3 .2 C om parisons o f P B A M w ith con ven tional V M s

Having described both the characteristics and virtues of conventional VMs and
a csa-based VM, distinctions can now be made between them. At face value,
in many respects, the VMs do seem to be similiar. The manner in which both
types of VMs support the construction of layered software via the use of libraries
are the same. Their approaches to supporting extensions to the core language
by the use of libraries are similiar. In addition, Exceptions in the Java VM and
PBAM both enable support for the upcall from the VM to the application. These
similiarities are to be expected as the conceptual underpinings of a csa-based VM
are built on top of and complement the basic concepts under which convential
VMs are built.

The complementary concept provided by a csa-based VM is the level of cus-
tomisability. This key difference lies in the ability to customise and extend the
opcodes in PBAM. This allows all available underlying mechanisms in PBAM
and that of other compliant underlying layers to be exposed to the upper layers.
This key attribute assumes that the VM itself is susceptible to change and that
all mechanisms that are available in the original VM are susceptible to those
changes. Taking a leaf out of Parnas5 view of transparency[69] of features avail
able in a VM, a csa-based VM thus provides complete transparency to all its
available mechanisms.

5.4 D esign o f 7rPVM

The 7T-SPACE Virtual Machine(7rPVM) is a VM that is designed to execute
7T-SPACE constructs. The approach undertaken to construct the 7tPVM was
through the customisation of the PBAM interpreter in order to utilise all the al
ready available underlying mechanisms which are augmented by the introduction
of new libraries. These basic mechanisms are in the form of the basic opcodes
and the default libraries. If there were policies which were not supported by this
default set of mechanisms, initial attempts were to extend the VM by implement
ing the mechanisms at the library layer. However, if the mechanisms could not
be created by writing a new library in the ProcessBase language, the next step
undertaken was to customise the opcodes in order to either modify the existing
underlying mechanisms or to extend the set of opcodes available. This facility is
useful for extending the VM beyond what can be done using the libraries written

www.manaraa.com

CHAPTER 5. VIRTUAL MACHINE COMPLIANCE 97

in ProcessBase. The design of the 7rPVM however would not require the use of
extending these opcodes but there are scenarios of evolution which should require
these facilities. A summary of the resultant customisations are detailed further
in the later sections.

5.4.1 A rch itectu re

The underlying architecture of the 7rPVM can be grouped into the three major
components. The grouping of these units are directly influenced by the policy
needs of a PSEE that were described in chapter 2. Each unit has a set of mech
anisms that have been designed to support their respective policy needs. The
policy needs are Process Enactment Support, Communication Support and Evo
lution Support.

Process Enactment Support provides the mechanisms that support the type
representations for the basic components in 7T-SPACE. Relevant support opera
tions that are required to manage the components were provided. The mecha
nisms to enact the process were also provided.

Communication Support provides the type definition for the 7T-SPACE channel
type.

Evolution Support provides mechanisms to support process evolution. The
type of mechanisms provided are the support for feedback to detect the need to
support the evolution and the ability to install a suitable process in response to
the evolution.

Figure 5.1*provides an illustration of the resultant conceptual architecture for
the ttPVM.

The rest of the subsections describes in detail each group of the underlying
mechanisms in terms of its implementation in ProcessBase. These mechanisms
can be grouped into two types, those that are designed to support passive com
pliance and those designed to support dynamic compliance.

5.4 .2 M echanism s to Support P assive C om pliance

Mechanisms to achieve passive compliance are implemented as functions in Pro
cessBase libraries. These mechanisms are designed to support the policy needs
that have been described in the previous chapter, chapter 4. They can thus be
described by grouping them by the policies that they are designed to support.

www.manaraa.com

CHAPTER 5. VIRTUAL MACHINE COMPLIANCE 98

Policies
Pro ,:ess Enactment

Support

- ..n-c . . .

Binding Rules

i k 1 k

1r i r ^r

Mechanisms Process Enactment
Support

Communication
Support

Communication
Support

Evoint'on Suppo’’

m
Evolution Support

ProcessBase

PBAM

Figure 5.1: The Architecture of the 7rPVM

Libraries

Most data types have a name field that is of type loc[string] which is a location
to a string type in the ProcessBase language. The main reason for this decision
was due to the requirement that 7r-calculus, on which 7T-SPACE is based,treats
every primitive as a name.

Any data fields that can be changed over its lifetime are represented as a
location(loc) of the type. Types that represent any dynamic structure such as
lists or trees are also defined as a location. This usually has the type of the
dynamic structure added to the name of the type. For example, channelList is a
List of Channels.

1. Process Control Support
These mechanisms provide support for the execution of processes that are
specified in 7r-calculus(see Chapter 3). As there is potentially more than
one process executing at one time, they are implemented as threads.

• Data Types
ProcessBase Definition

ThreadList i s v i e w [t h r e a d ld : lo c [in t] ;
t h r e a d : l o c [f u n ()] ;
n e x t :lo c [T h r ea d L is t]]

www.manaraa.com

CHAPTER 5. VIRTUAL MACHINE COMPLIANCE 99

The ThreadList structure stores the th read ld and the location to the
function in a list.

• Functions

(a) Process Creation
ProcessBase Definition

addThreadList <- fu n (n ew _ th rea d :fu n ();
t h r e a d _ l i s t :ThreadList)->ThreadList

This function adds a new Thread to the ThreadList.

(b) Process Instantiation
ProcessBase Definition

l e t s ta r tT h r e a d L is t< -fu n (th r e a d L is t :ThreadList)

This is a function that starts all the threads in the th read L is t.
The function makes use of the ThreadLib library which utilises
POSIX[33] compliant threads.

(c) Process Removal
ProcessBase Definition

l e t rem oveT hreadL ist<-fun(threadld: i n t ;

th r e a d L is t :ThreadList)

This function is an inverse of the addThreadList function where a
thread is remove from the list of thread based on the id.

2. Communications Control
Mechanisms are required to support the channel type and the channel oper
ations that are available in tt-SPACE. The following mechanisms have been
implemented and made available for use:-

• Data Types
Figure 5.2 shows the ProcessBase data types implemented and their
dependencies for supporting Communication Control in the 7rPVM.

— Channel
ProcessBase Definition

view[name:lo c [s t r i n g] ; i d : i n t ; b u f f e r :loc[ChannelBuf]]

This type consists of the name of the channel, a unique id and the
ChannelBuffer for buffering messages that are received by the

www.manaraa.com

CHAPTER 5. VIRTUAL MACHINE COMPLIANCE 100

ChannelAttachTable

ChannelA ChannelB next

ChannelAttachT able

ChannelB next*-ChannelA

Channel

id:int buffername

ChannelBuf

next?string gram:any

ChannelBul

nextgram :any

location type of

Figure 5.2: Types in Communication Control

channel. The implementation assumes that the mechanisms that
support channel communication are implemented in ProcessBase
as opposed to using the underlying mechanisms of the underlying
mechanisms available in the VM or OS.

— ChannelBuf
ProcessBase Data Structure

view[gram:any; n e x t: loc[ChannelBuf]]

This type provides an implementation of a buffering for channels.
Each ChannelBuf structure has a gram of type any which allows
it to carry a data element of any type in ProcessBase. The next
field next is due to the implementation decision of implementing
the ChannelBuf as a list.

— ChannelAttachTable

www.manaraa.com

CHAPTER 5. VIRTUAL MACHINE COMPLIANCE 101

ProcessBase Definition

view[channel_a: Channel;

channel__b: Channel;

n e x t :lo c [ChannelAttachTable]]

This is a table structure that stores the channels that have been
attached to each other. This structure will be used by the func
tions that handles the send and receive operations.
This lookup table is used to store channels that has been attached.
It is implemented as a list.

• Functions

— Channel Generator -
ProcessBase Definition

genChannel <- fu n (name:str ing)-> C hann el

The function generates a new Channel. It returns a Channel in
stance with the name specified in the name parameter.

— Channel Attachment via the attach operation
ProcessBase Definition

attachChannel <- fu n (ch an n el_a : Channel;

channel_b: Channel)

Attaches channel-a to channel_b by creating a new entry in the
global ChannelAttachTable.

— Sending
ProcessBase Definition:

sendT o(channel:Channel; gram:any)

Algorithmfin pseudo-code):

Takes channelname as input;

Scans the ChannelAttachTable(channel_a, ch an n el_b);

■C

I f the channelname matches channel_a then
add data to ChannelBuf of the a s s o c ia t e d channel_b

or v ic e versa;

www.manaraa.com

CHAPTER 5. VIRTUAL MACHINE COMPLIANCE 102

— Receiving
ProcessBase Definition

receiveFrom <- fu n (ch an n el:Channel:gra m :lo c [a n y])

-> bool
receiveStringFrom < -fu n (ch a n n e l:Channel:g r a m : lo c [s t r in g])

-> bool

receiveFrom implements the 7T-SPACE receive(msg) operation.
This is a blocking function which means that if there are no mes
sages in the receiving channel buffer when this function is invoked,
the execution thread will be blocked. This allows communication
operations to control the synchronisation of threads which is the
behaviour that follows operations of the receive operation in 7r-

calculus.
Algorithm(in pseudo-code):

Scan the ChannelAttachTable

I f channel matches

I f ChannelBuf i s not empty, then

■C

remove gram from ChannelBuf and retu rn as gram;

return true

>

e l s e
retu rn f a l s e

>
e l s e retu rn f a l s e

— Channel renaming
ProcessBase Definition

renameChannel <~ fu n (c h a n n e l:Channel; new_name:s tr in g)

— Checking ReceiveBuffer status
ProcessBase Definition

checkReceiveChannel <- fu n (channe1 : Channel) -> bool

checkReceiveChannelSize <- fu n (ch a n n e l:Channel) -> in t

www.manaraa.com

CHAPTER 5. VIRTUAL MACHINE COMPLIANCE 103

The checkReceiveChannel functionchecks if there are any mes
sages on the receive buffer of a channel and the
checkReceiveChannelSize function returns the number elements
currently in the receive buffer of a channel. These functions are
required for checking if a channel’s receive buffer has received any
messages.

3. 7T-SPACE Structures
The following lists the 7T-SPACE types and their corresponding implemen
tation in ProcessBase. The functions available for manipulating these types
are also listed.

• Data Types
Figure 5.3 shows the overview of ProcessBase types for representing
the core types available in 7T-SPACE.

n -SPACE Types

Port

ProcessBase type definition

namenê * channels

string

port_specj

ChannelList string

Behaviour n am e* ports behaviour_fun* behaviour_spec«

I
string PortList fun() string

Component nam^* porta* behaviour components* connector^ i wherefur* whenve*

/ /

Connector

string PortList BehaviourLlst

• ------- location type of

fypenameList has a structure of

ComponentList ConnectorList fun() fun()

namt^* ports* behaviours*

/
string PortList BehaviourList

typename

Figure 5.3: 7T-SPACE types and their associated representations in ProcessBase

Each type will be described in detail in the following list by firstly

www.manaraa.com

CHAPTER 5. VIRTUAL MACHINE COMPLIANCE 104

describing their definition in ProcessBase and secondly providing the
justification of how the elements in the structure are used.

— Channel
ProcessBase Definition
This was described in the previous section that describes the mech
anisms for supporting the Communication policy.

— Port
ProcessBase Definition

view[name: lo c [s tr in g] ;
ch an n els: lo c[C h an n e lL is t];
p o rt_ sp ec : lo c [s tr in g]

]
A port is made up of a collection of channels. The port_spec
element stores the 7r-calculus specification for a Port in string for
mat. This is stored as a string type as a way to retain its original
definition which could be used later.

— Behaviour
ProcessBase Definition

view[name: lo c [s tr in g] ;
p o r t s : loc [P o rtL ist] ;
behaviour_fun: loc [funQ] ;
behaviour_spec; lo c [s tr in g]

]
A behaviour type is defined by the list of ports which can be
operated on by the behaviour. behaviour_fun is a reference to
a implemented function that provides an enactable representa
tion in ProcessBase of the behaviour as specified in 7r-calculus.
behaviour_spec stores the 7T-calculus specification of the behaviour
in string format.

— Component
ProcessBase Definition

view[name: lo c [s tr in g] ;
p o r t s : loc [P o r tL is t] ;
b eh av iou rs:loc[B ehaviourL ist] ;

www.manaraa.com

CHAPTER 5. VIRTUAL MACHINE COMPLIANCE 105

components: loc[Com ponentList];
connecto rs: lo c [C o n n ec to rL is t];
wherefun: loc [fu n 0] ;
whenever: lo c [fu n ()]

]

A component is made up of a list of ports, behaviours, component
and connectors, wherefun and whenever store the references to
functions which implement equivalent behaviour in ProcessBase
of the where and whenever operations in 7T-SPACE respectively.

— Connector
ProcessBase Definition

view[name: loc [s tr in g] ;
p o rts : loc [P o r tL is t] ;
behaviours : loc [BehaviourList]

]
A connector is made up of a list of zero or many ports and be
haviours.

— Operation
ProcessBase Definition

view[name: lo c [s tr in g] ;
s ta r t_ fu n : lo c [fu n ()]

]
The Operation type is made up of the name of the operation and
the s ta rt_ fu n which stores the location of the ProcessBase func
tion that provides an enactable format of the Operation. Parame
ters are not shown in the type definition as they are bound during
creation.

• Functions

— Generators
There are generator functions for each type and they are usually
in the form of:-
gen< Component Type> (< Component Parameters>) For exam
ple a generator for Component has the following ProcessBase definition

www.manaraa.com

CHAPTER 5. VIRTUAL MACHINE COMPLIANCE 106

genCoraponent <- fun(name:s tr in g ;

p orts : lo c [P o r t L i s t] ;
behaviours : lo c [B e h a v io u r L is t] ;
components : loc[C om ponentL ist];
connectors : lo c [C o n n e c to r L is t] ;

wherefun : l o c [f u n ()] ;
wheneverfun : lo c [f u n ()]) -> Component

— Utility Functions
There are various functions for manipulating the data types. A
summary of these are shown as follows:-
add< Component Type> (< Component Parameters>)
Adds a component of type Component Type to a list specified in
Component Parameters.

getT yp e_str in g <- f u n (x :a n y)-> s tr in g

Returns the typename of the x.

4. Global Control Structure
Global Data structures consists of all the data structures that are used to
store the state of all the entities that are executing within the VM.

• Data Types

— Tables
Each type within the tt-SPACE type is store as Tables. Each 7r-
SPACE type has a table which is stored as a binary tree that is
identified by its name.

ComponentTable
ConnectorTable
PortTable

BehaviourTable
ChannelTable

OperationTable

— Process Root
ProcessBase Definition

www.manaraa.com

CHAPTER 5. VIRTUAL MACHINE COMPLIANCE 107

Process i s view [i d i i n t] ;

name:lo c [s t r i n g] ;
rootComponent:loc[Component] ;
components:loc[ComponentList] ;
c o n n e c to r s :lo c [C o n n e c to r L is t] ;
p o r t s :l o c [P o r t L i s t] ;
c h a n n e ls :loc[C hannelL ist] ;
b eh a v io u rs :lo c [B e h a v io u r L is t] ;

o p e r a t io n s :lo c [O p era t io n L ist]

]
The Process is the root for a specific process model.
The rootComponent element within the Process control structure
stores the reference to the root Component of the process model.
The Component must be defined within the components element.

• Functions

(a) Process Enactment Support

i. The composeComponent operation allows the creation of a
composite by composing the set of components and connectors
based on the where and whenever specification and executing
the resultant composition.
ProcessBase Definition
l e t composeComponent <- fun(components: ComponentList;

connector: ConnectorList;

w here_fun:loc[fun()]; whenever_fun:loc [fu n ()])

ii. The decomposeComponent operation provides the converse of
the composeComponent operation
ProcessBase Definition
l e t decomposeComponent <- fun(components: ComponentList

connector: ConnectorList) Both these operations are pro
vided as headers where only a specific composition is generated
to test for feasibility and validity of the parameters within the
context of the experiment.

iii. There are also operations to manage the Global Structures.
As they are represented as a tree structure these operations

www.manaraa.com

CHAPTER 5. VIRTUAL MACHINE COMPLIANCE 108

include operations for adding, editing and removing the nodes
from typeTable structure. For example for the the BehaviourTable

structure the ProcessBase definition is:-
rec l e t addBehaviourNode <- fun(

newNode:Behaviour;

r o o t :BehaviourTable;
f

overw rite:bool)->BehaviourTable

rec l e t getBehaviourNode <- fun(
name:str ing;
r o o t :BehaviourTable)->BehaviourTable

rec l e t delBehaviourNode <~ fun(
name:str ing;

r o o t :BehaviourTable)->BehaviourTable

(b) Communications Support
These functions provides the ability to manage the global struc
tures that support communication.

Figure 5.4 showing a summary of the global data structures that form the
control structures used by the VM to keep the state of all the 7T-SPACE structures.

5.4 .3 M echanism s to su pp ort D ynam ic C om pliance

In addition to the requirement that a system must support static compliance, the
following mechanisms are required to support Dynamic Compliance within the
VM layer.

1. Reflective Compiler
The reflective compiler is derived from the stand-alone compiler that has
been written in ProcessBase but packaged as a self-contained function in
ProcessBase.
ProcessBase Definition

PPEE_com pileString<-fun(program :string)->PPEE_com pilationResult

www.manaraa.com

CHAPTER 5. VIRTUAL MACHINE COMPLIANCE 109

The function takes as its input a parameter program of type s tr in g and re
turns the result of compilation in a structure of type PPEE_compilationResult.
Without going into the details of the PPEE„compilationResult type now,
as it will be described in chapter 6, the function returns the resultant gen
erated code if program is valid 7T-SPACE.

2. Upcalls/downcalls
The downcalls are the invocation mechanim for the compiler. The downcall
is a function call to the PPEE.compileString or it can be invoked as part
of the compile and go operation of the HyperCode Eval operation. Ba
sic HyperCode operations were introduced in chapter 2 and the 7T-SPACE
HyperCode operations will be described in chapter 6.

The upcall is the feedback of results from the compiler. As for the result of
the Eval operation, it will either be a hyperlink to compiled structure or a
compilation error message.

3. Meta-Process
The meta-process is provided later and also described in chapter 6. As
such, the mechanisms that are provided in the VM are just functions that
provide hooks to the meta-process model at the layer above the VM layer.
All that the functions provide here are message routing mechanisms.

Physical A rchitecture

In ProcessBase, all the described mechanisms were implemented in libraries. Each
library file contains the ProcessBase code which implements the types and func
tions that make up each mechanism. The layout of the libraries forms the physical
architecture that is orthogonal to the conceptual architecture. The list of library
is as follows:-

1. ps_en tityL ib - contains all the core type definitions.

2. ps_commsLib - contains the variables and functions that implements the
Communication Control mechanisms. This includes all the functions de
scribed in Communication Control.

3. ps_procLib - contains the variables and functions that implements the Pro
cess Control mechansims. This includes all the functions described in the
section on Process Control Support

www.manaraa.com

CHAPTER 5. VIRTUAL MACHINE COMPLIANCE 110

4. ps_managerLib - contains the variables and functions that implements the
Global Control mechanisms.

5. pS-CompLib - contains the reflective compiler.

6. ps_codegenLib - contains the functions that facilitates the code generation
phase of the reflective compiler.

7. p s _ u t i l i t i e s - contains the utilities that can be used in other libraries.

Figure 5.5 shows the physical architecture of the ProcessBase libraries imple
mented for the 7tPVM.

Bootstrapping

The approach taken to bootstrap a process is by the use of an Eval operation
provided by the HyperCode system. The HyperCode system will be described in
chapter 6 but essentially the Eval operation provides a ’compile and go’ operation
and if the compilation operation is successful, the code fragment is executed and
a hyperlink to that enacting fragment is returned. The hyperlink provides a self-
contained reference to the code fragment which can be used as a value within the
language. For example when we eval a 7T-SPACE definition of two components,
the result of the Eval is two executing component definitions and their references
are returned as two hyperlinks. So, for example, we can then use the compose
operation to combine them where the parameters to this compose operation are
the two hyperlinks to each of the components.

5.5 C riteria for V M Com pliance

As PBAM is a CSA tool that was built to support the needs of a Process Mod
elling System[93, 96] the basic mechanisms that were provided could mostly be
reused. This included the basic libraries that support thread control, exceptions
handling, persistence, and reflection within the language. Most of the work re
quired was generally on the design and implementation of additional mechanisms
for supporting the tt-SPACE language.

This point verifies the assumption that csa-based tools, which are built with
the ability to support the set of policy needs of the application, will be easier to
implement and evolve by requiring fewer changes to the tools.

www.manaraa.com

CHAPTER 5. VIRTUAL MACHINE COMPLIANCE 111

Part of the VM is also provided in the HyperCode system. The mechanisms
that were constructed at this layer are expected to support static compliance.
Dynamic compliance for process models are provided by the interaction of the user
with the model. The infrastructure to support dynamic compliance is provided by
a meta-process which is also provided in the layer above the VM. The HyperCode
system and the meta-process will be described in chapter 6. In this manner, the
policy for evolution is influenced by the user’s interaction with the defined process
model.

The definition of Generic Compliance also provides a guide in structuring a
system into four different criteria. The result of performing this on the ttPVM is
summarised as follows:-

1. Number of Layers - There is only one layer that has been added.

2. Required system functions - The following system function mechanisms are
required:-

• Thread control which includes thread creation, deletion and execution.

• Communication mechanisms, data buffering

3. Method for specifying policy information - Currently specified in 7T-SPACE.

4. Upcall/downcall, horizontal calls - downcalls are performed via ProcessBase
function calls. Upcalls are provided by the use of exceptions and interrupts
in the ProcessBase language. Horizontal calls are provided by channels
written in ProcessBase which are translated into ProcessBase functions calls
that provide mechanisms for channels.

5.6 M odel for determ ining V M C om pliance

Com ponents

As a compliant systems must be represented as a set of P, M and ®, the model
to determine a csa-based application will now be applied to the VM constructed.
The following lists the set of Policies P, Mechanims M and Binding Rule ® that
can be realised with justifications.

This chapter has described the set of mechanims that are provided by the
7tPVM. This was implemented as a set of library functions which provided the

www.manaraa.com

CHAPTER 5. VIRTUAL MACHINE COMPLIANCE 112

abstractions for the 7T-SPACE ADL. The 7T-SPACE language, in particular the
mechanisms provided by the 7T-SPACE language that were described in chapter
4 forms the policy needs that are supported by the mechanisms in the VM. Sub
sequently, the binding rule that provides the downcalls and upcalls between the
mechanisms in the 7rPVM and its policies are derived by understanding how the
policies can invoke the mechanims and get the required feedback from the mech
anisms. Downcalls in this layer are in the form of ProcessBase functions and the
upcalls are provided in the form of a return value from these invocations. Upcalls
are also provided in the form of an Exception which provides the asynchronous
form of upcall.

In summary, the compliance model is realised as:-

1. P = 7T-SPACE language constructs. These are the language mechanisms
which were described in chapter 4.

2. M = 7T-SPACE language constructs that are implemented as library func
tions in ProcessBase.

3. 0 = The binding rule maps the constructs of the 7T-SPACE language to
those that are provided by the mechanisms in the VM.

Binding Rule

1. Downcall
The downcall is a function invocation from the language to the functions
that implement the 7T-SPACE constructs.

Policy information for the mechanisms are passed as function parameters.

2. Upcall
Upcall is implemented in the form of a return value from a function invoca
tion. This form of upcall is expected by the 7T-SPACE language. Another
form of feedback which is unexpected is via an Exception call which needs
to be caught by the language.

Figure 5.6 describes the architecture of the 7rPVM in terms of a logical view and
its corresponding view from the perspective of a compliant system.

This model is used to the evaluation chapter in order to determine Layer
compliance when it is integrated with the language layer.

www.manaraa.com

CHAPTER 5. VIRTUAL MACHINE COMPLIANCE 113

5.7 Sum m ary

A VM makes it easier for software systems to be implemented and executed on
different hardware and at times different operating systems. The CSA tools, in
particular the PBAM, were customised in order to provide a proof of concept that
a compliant Abstract Machine not only makes it easier to customise a system for
an application but also allows customisations that were not possible with tools
that are not compliant. The work detailed here also shows the range of flexibility
that is provided by a CSA tool.

A model that will be used to determine the compliance of the VM has also
been described in this chapter. This model only provides a glimpse into how the
mechanisms available at the VM layer can be compliant to some of the policy
needs that originated from the definition of the code generation rules for enactable
7T-SPACE. This model is used later in chapter 7

Policy needs and thus the process model for evolution/change can be defined
by the way the user interacts with the underlying mechanisms in the VM. This
chapter only decribed the underlying mechanisms of the 7tPVM that will be used
to support the policy needs of the application. The following chapter will describe
the interface which the user uses to interact with the system and how the meta
process can be captured by a software process framework.

www.manaraa.com

CHAPTER 5. VIRTUAL MACHINE COMPLIANCE 114

Global Structures stored as Trees
referenced by names

ComponentTable

Component Component

ConnectorTable

Connector Connector Process

BehaviourTable stringname

rootComponent
Behaviour Behaviour

components

PortTable

connectors

Port Port
behaviours

ChannelTable
ports

channelsChannel Channel

OperationTable operations

Operation Operation

Figure 5.4: Global Control Structures

www.manaraa.com

CHAPTER 5. VIRTUAL MACHINE COMPLIANCE 115

ps_entityLib 4

— ps_managerLib -4-

ps_procLib ps_compLib

Channel PPEE_com pileString

ps_codegenLibps_commsLib

Component Port

Connector Behaviour

Com ponentTable

ConnectorTable

PortTable ChannelTable

BehaviourTable OperationTable

com p ose
Com ponent

d ecom p ose
Com ponent

Receive

^ sendTo

ps_utilities

 ^ Depends on and thus
 includes it as a library
Library Name

~r — s
FunctionsData

Types

Figure 5.5: Physical Architecture of libraries in ProcessBase

www.manaraa.com

CHAPTER 5. VIRTUAL MACHINE COMPLIANCE 116

Physical View

ProcessBase equivalents

Components Ports

Connectors Behaviour

Channel Operations

n -SPACE constructs

Function
Invocation

PBAM library functions

c
o
o
c=J

Function
Result /

Exceptions

Compliance View

ps_entityLib
ps_managerLib

ps_commsLib

ps_procLib psutilitiesLib

pscom pLib ps_codegenLib

Core PBAM

Components Ports

Connectors Behaviour

Channel Operations

Function
Invocation

Policies

Function Result
Exceptions

j ~ | Binding j '

j* -.......-\ Rule [~—
Upcall

ps_commsLib ps_managerLib ■o

Components Ports

Connectors Behaviour

Channel Operations

I
ps_compLib ps codegenLib 5-

Mechanisms

Figure 5.6: Physical and compliant models of the 7tPVM

www.manaraa.com

C hapter 6

A pplication C om pliance

6.1 Introduction

This chapter describes the design and implementation of the top-most csa-based
software layer which utilises the mechanisms of the underlying layers that were
described in chapters 4 and 5. This layer provides a compliant layer to support
the construction, enaction and management of process models on a PSEE. As
this layer essentially forms the interface with the application domain, the chapter
starts by describing the mechanisms that were designed and implemented to
support the policies required by the application domain of the PSEE.

A PSEE application can be described as interacting with the process domain
at two levels. These levels include:-

• An interface to specify and manipulate executing process models

• A meta-process for supporting evolution that is used to structure the resul
tant models created via the above-mentioned interface.

(The development interface is provided by a HyperCode System and the meta
process itself will be based on a generic process framework called Towers[31, 78].
Both layers will be described in detail and, where appropriate, their design and
construction. The model of determining compliance will be applied to each layer
separately. A description of the work to integrate the HyperCode System and
the Towers framework is then provided.

117

www.manaraa.com

CHAPTER 6. APPLICATION COMPLIANCE 118

6.2 A 7T-SPACE H yperC ode System

A HyperCode System provides a suitable interface for the development of process
models in the 7T-SPACE language due to its ability to manage and display both the
textual representation of static code fragments and their executable equivalent.
This allows the representation of both the static and also dynamic definitions
of process models in terms of text and hyperlinks respectively. The benefits of
utilising such a system as an aid to software development have already been
described by Vangelis [105]. In this section a description is given of the work
that has been done to develop a HyperCode System for the 7T-SPACE language.
In order to achieve this, the hypercode representation for the 7T-SPACE language
is defined after which the customised HyperCode System to support them is
described.

6.2.1 P relim in aries

The conceptual underpinings of a generic HyperCode System are as described
by Vangelis[105] and were also briefly revisited in chapter 2. They will be used
as a guide for designing and constructing a hypercode system that is customised
for the 7T-SPACE language. Both available HyperCode Systems for Java and
ProcessBase, as constructed and described by Vangelis[105], were used as the
basis for constructing a HyperCode System for the 7T-SPACE language. As with
other CSA tools, the approach taken was to customise the CSA tools by way of
reusing the available mechanisms where appropriate and by extending the set of
mechanisms when policy needs are not met by the default mechanims.

6.2.2 C oncep tu al M odel

The conceptual model of the HyperCode System for 7T-SPACE was largely in
fluenced by the design of the 7rPVM described in chapter 5 and especially by
the policies that the available mechanisms support. The 7rPVM is essentially a
customised PBAM interpreter with libraries to support the abstractions provided
by the 7T-SPACE language. In order to translate the 7T-SPACE entities into their
equivalent ProcessBase entities, a translator/compiler which translated 7T-SPACE
into their semantic equivalent representations in ProcessBase was introduced into
the conceptual model. The design and construction of the translator was already

www.manaraa.com

CHAPTER 6. APPLICATION COMPLIANCE 119

described in chapter 4 but its use within the HyperCode System will be described
later.

As the original HyperCode System only operated within a single language,
the tasks of the domain operations were to maintain the consistency between the
E and R domains. The introduction of another domain, that of the 7T-SPACE,
required the introduction of a new operation. This resulted in a model shown in
figure 6.1.

71-SPACE

Entity Domain Representation
•* r i r \ n r i Q i n

Reflect

Reify

Translate tc-SPACEe/
ProcessBase^

T ransform

Translate ProcessBaseE/
k -SPACEpProcessBase

Reflect

Reify

Execute T ransform

Figure 6.1: The Conceptual Model of the 7T-SPACE HyperCode System

The details of the conceptual model will be described in detail in the following
sections. The descriptions will mainly be in the form of customisations that
were made to the HyperCode domain operations and the relevant HyperCode
Operations(HCO) that utilises these domain operations.

www.manaraa.com

CHAPTER 6. APPLICATION COMPLIANCE 120

7T-SPACE HCOs Domain Operations
Evaluate reify Ti- (translatep_„ (executep (translate„_p (entrep))))
Explode reify,,- (translatep_„ (translate^ _p (reflect,, (entrep))))
Implode reify„ (translatep_„ (tran sla te ,^ (reflect,, (entrep))))

Edit transform,, (entrep)
GetRoot reify (translatep_„ (Roote„t))

T h e su b s c r ip t for each o p e r a tio n d e te r m in e s th e ta r g e t la n g u a g e o f th e o p e r a tio n .

S u b sc r ip t i r is for th e 7T-SPAOE la n g u a g e an d p is for P r o c e ssB a se .

T h e h y p h e n (-) is u se d to d e sc r ib e d th e d ir e c t io n o f tr a n s la t io n for th e t r a n s la te o p e r a t io n .

T h e tr a n s la t io n s h o u ld b e read as t r a n s la t in g a la n g u a g e th a t is sp e c if ie d b y th e

s u b s c r ip t on th e le ft to t h a t o f th e la n g u a g e th a t is sp e c if ie d by th e su b s c r ip t o n th e r ig h t.

Table 6.1: 7T-SPACE HyperCode Operations and their Domain Operations

D om ain Operations

The four original domain operations, reify, reflect, execute, transform were re
tained for the 7T-SPACE HyperCode System. These operations were generic
enough to support the basic HCO for the 7T-SPACE HyperCode System.

However, a new domain operation, translate, was introduced in order to trans
late code from 7T-SPACE to ProcessBase and vice versa. In addition, to provide
more detail on the type of language translation operation, a subscript was added
to the name of operation. The end result are two operations, the jiranslatep- n
operation, which is used to represent a translation from ProcessBase to the ir-
SPACE language and the translate.,,_p operation, which performs the operation
of transforming from 7T-SPACE to ProcessBase.

The introduction of the translate operation seems to fit into the definition
of the original HCOs. The end result is summarised in table 6.1 which shows
the translate operation fits within the rules of equality that maps the 7T-SPACE
HyperCode operations to the underlying domain operations .

The conceptual mapping of the HCO to their respective domain operations
provides a guide for creating a concrete architecture. The concrete architecture
however only provides an overview of how the different components of a Hyper
Code System can be put together. In order to create a HyperCode System, the
effects of each HCO on the HyperCode representation are now described.

www.manaraa.com

CHAPTER 6. APPLICATION COMPLIANCE 121

H yperCode O perations(HCO)

The following list describes the role of each HCO and if relevant the result of the
operation on the hypercode representation.

• Evaluate
The Evaluate operation compiles the textual representation and if it is valid,
executes the 7T-SPACE model. If the result of the evaluation returns a value
or type, a link is returned and displayed on the HyperCode Client. This
link can then be used by other HCOs.

• Explode
Explode reveals more information about a particular hyperlink instance.
The type of information which is shown after an explode operation depends
on the type of hyperlinks.

Table 6.2 shows some illustrations of the result of explode operation on the
different 7T-SPACE hyperlink types or values.

• Implode - Implode is just a converse of the Explode operation where the
the exploded representation is returned back to its simplified representation.
This operation can only be applied to a hyperlink view where an Explode
operation has been earlier applied. This means that an Implode operation
will not have any result at all on a Hyperlink if it has not been through
an Explode operation. The intuition is that you cannot implode more than
you have exploded with respect to a HyperCode object.

• Edit - This is the editing activity during the writing of code. These ac
tivities can range from just writing valid source code text to sophisticated
code editing functions such as cutting and dragging and dropping of valid
hyperlinks. The range of activity is defined by the facilities available in the
user interface tool which is termed the HyperCode Assistant which will be
described in section 6.2.3.

• GetRoot - This operation returns a hyperlink to the Root of the Persis
tent Store. The reason for this operation is to provide a grounding so that
hypercode objects can be persistent across development sessions. Any hy
perlinks that are not placed somewhere that is accessible from the Root of
Persistent will be transient and thus lost after the store is garbage collected.

www.manaraa.com

CHAPTER 6. APPLICATION COMPLIANCE 122

HyperLink to.. Examples of exploded hyper-links Values
operation operation(in[(__J, ...],

in ou t[(T D],
outll], ...])
{ [ProcessBase 1)

Links to parameters with in,
inout and out specifiers.

Links to ProcessBase
representation.

channel fs trin g ’)], [LU1 Channels with string literals and
integer literals respectively

port portK] , . . . l
{[specification}

Links to channels instances and
port specification

behaviour behaviour U J ,.. .]
{[specification]}

Links to port instances and
behaviour specification

component component
{
[decl 1
ports 1 1....
behaviours 1 1, ...

}

Links to declarationfie value or
operations), port and behaviour
instances

connector connector
{
[decl 1
ports 1____
behaviours [I

)

Links to declaration(ie value or
operations), port and behaviour
instances

composite composite
{

|com ponen tsl:|P |^M II
|connectors| :M - 1

where
□

whenever
□

}

Links to instances of components
and connectors with their
corresponding types. There are
also links to the instances of
where and whenever operations.

where op: attach attach I 1 to [1 Links to attached channels
where op: replace replace [I by I I Links to component instances

HyperLink to.. HCR in R
value

type

Table 6.2: Effects of the Explode operation on 7T-SPACE Hyperlink types

www.manaraa.com

CHAPTER 6. APPLICATION COMPLIANCE 123

6.2 .3 P h ysica l M od el

Having described the conceptual model and its effects on the representation of
hypercode objects, the physical model can now be described. Describing the
architecture will provide an overview of the design after which each component
within the architecture will be further explained.

Architecture

The HyperCode System is built following a physical client-server architecture
where the responsibility is to provide the facilities of an interface to the ser
vices that are provided by the server. The client, termed the HyperCode Assis
tant (HC A) provides the User Interface(UI) frontend which allows developers to
specify and manipulate models by using the available HyperCode operations from
the HCA. From a csa perspective, the user thus specifies the policies by using the
mechanisms that are available as HCOs. Subsequently, the HCOs on the HCA
are viewed by the HyperCode Server as the policies that need to be supported
by the mechanisms provided by the server.

The HCA and HCS are linked by a communications channel that allows in
formation to be exchanged between them.

Figure 6.2 describes the architecture of the 7T-SPACE HyperCode System in
terms of a logical view that is made up of a HCA, HCS and a communications
channel that links the HCA and HCS.

Logical View

HyperCode
Assistant

HQAIJ

~o
LD

TO>
LU

Operations

oo
C£«*—f
0
0

0"D_o
Q_
X

LU

0~oo
Cl

E

Communications
Channel HyperCode Server

-o
LU

CS Operations

0>
LU

OO
O'
0
0

0“O_o
Q.X

LU

0■O_o
CL
E

Figure 6.2: The Architecture of the 7T-SPACE HyperCode System

www.manaraa.com

CHAPTER 6. APPLICATION COMPLIANCE 124

Each component of this architecture will be further described in detail in the
following sections with emphasis on the customisation work that was completed.

H y p erC o d e A ssis tan t(H C A)

The 7T-SPACE HCA provides the frontend to the HCOs that were described
in 6.2.2. The 7T-SPACE HCA retains all the basic functionality of the original
HCA except for the addition of support for compiling 7T-SPACE code. The UI
changes are kept to a minimum through the introduction of a 7T-SPACE evaluate
button. In order to simplify the implementation, the processbase evaluate is still
retained and in fact supports the Evaluate HCO for the ProcessBase language.
This is possible as at the base level, the 7T-SPACE Hypercode is compiled into
ProcessBase HyperCode.

Figure 6.3 shows a screenshot of the HCA for the 7T-SPACE HyperCode Sys
tem illustrating the main features of the client.

untitled 1 H&I - I n i xi
Pe rs i s tence Edit O p t io n s

Evaluatel E v a l u a t e s pace 1

define port type Request [request: [string], reply:[st
{

Request [request, reply] = r e que s t < s ervic e >. r epli
M l

L in e : 4 , C o lu m n : 2

Figure 6.3: A screenshot of the HCA showing the added 7T-SPACE button

H y p erC o d e S erver(H C S)

The HCS listens to the requests from the HCA, processes the requests and re
sponds to the HCA according. The HCS encapsulates the HCO and domain

www.manaraa.com

CHAPTER 6. APPLICATION COMPLIANCE 125

operations that have been described in 6.2.2 and 6.2.2 respectively. A description
of the architecture with references to the original HCS is required to understand
the customisations that were required in constructing the HCS for the 7T-SPACE
language.

Figure 6.4 shows the added portions and the data format required to store
the extra HyperCode elements for the 7T-SPACE language.

[Other HyperCode O perations]Eval

rc-SPACE HyperCode Structure

ProcessBase
HyperCode Structure

-SPACE Compiler
(PPEE_Compi!eString)

Text 7i-SPACE
HyperLinks

ProcessBase
HyperLinks

ti-SPACE HyperCode Structure

Original ProcessBase HCS

ProcessBase

7i ■-SPACE
HyperCode

ProcessBase
HyperCode

ProcessBase
HyperCode

tc-SPACE
HyperCode

Figure 6.4: The customisations made for the 7T-SPACE HCS

Com m unications Channel

The communication channel is implemented as a network socket[77, 88] connec
tion. The communication channel instance is only created when the HCS opens
and binds to a default port, and the HCA connects to the HCS port and starts
sending data via that port.

A basic request and reply protocol is used to facilitate the communication
between the HCA and HCS. This protocol contains a message format that allows

www.manaraa.com

CHAPTER 6. APPLICATION COMPLIANCE 126

specific HCO selection and their associated parameters to be passed from the
HCA to the HCS.

6.3 D eterm in ing th e C om pliance o f th e 7T-SPACE

H yperC ode System

The compliance of the 7T-SPACE HyperCode System is determined by the pres
ence of a binding rule for each of the policy needs. The binding rule itself must
satisfy the basic attributes of a downcall and upcall where policy information can
be passed downwards to the underlying layers and mechanism information can
be passed upwards back to the policy.

As the HyperCode System has been described in detailed in terms of its
conceptual and physical model, it is instructive to apply the model of determining
compliance to both models in order to better understand if an abstract compliant
model is applicable and useful for describing a flexible system.

6.3 .1 C on cep tu a l M od el

C om ponents

A compliant systems must be represented as a set of P, M and ©. The following
lists the set of Policies P, Mechanisms M and Binding Rule © that can be realised
with justifications.

1. P = 7T-SPACE HCO, each 7T-SPACE HCO defines an operation which forms
the policy that needs to be satisfied.

2. M = 7T-SPACE Domain Operations, the domain operations provides the
mechanims which is designed to support the policy as defined by the each
tt-SPACE HCO.

3. © = Rules of equality that matches the HCO to their respective domain
operations.

www.manaraa.com

CHAPTER 6. APPLICATION COMPLIANCE 127

B ind ing R ule

1. Downcall
The equivalence rules that map each HCO to their respective domain op
erations Policy information

2. Upcall
The equivalence rules that map each combination to their respective HCO

M easuring Layer C om pliance

In order to measure layer compliance, the Compliance function T can be used. As
there are only four policy elements in the set of P, it is clear how the Compliance
function T is T. As there exists a binding rule 0 which maps a policy to one
or more mechanism (rule of equivalence) for every element p in the set of P (n-
SPACE HCOs), the conceptual model is said to be compliant to the needs of the
policies.

Figure 6.5 describes the architecture of the tt-SPACE HCS in terms of a logical
view and its corresponding view from the perspective of a compliant system.

Logical View

HyperCode Operations Domain operations

0 d)
TO ro> Orr

TJO ■oO
LU LU 0 Q.X Q.C

0 LU

Rules of Equality

"■SPACE Enm y
 Domnin

T ransla te
S P A C E j

P ro c o ssB a se

syr

Roily

T c a n a 'a t p . . , .
ProcossB aB D J

JfcpPA CEe.
^ R dhoct

■ TrarrsfomnA

ProCTSsBosV)' E x o cu to T I T ransform A

Compliance View

Policies
D o w n c a l l .

equivalence

B i n d i n g
R u l e

HCO 0
to, .

E
va

l oo
0TO 0TO equivalence = m

R
ef

le
ct

R
ei

fy p
0•w3

"OLll {£
"5
0

Q.X
Ul

Cl
5=

co -=
O" DC
LU

We
2

wc
2

O0XLUDomain 1— h-

Up co I

Mechanisms

Figure 6.5: Conceptual Model of the 7T-SPACE HyperCode System as a Compli
ant Systems Architecture

www.manaraa.com

CHAPTER 6. APPLICATION COMPLIANCE 128

6.3.2 P h ysica l M od el

Having applied the csa-model to the conceptual model, it would be useful to see
if it can be applied to the physical model.

Com ponents

Decomposing the HyperCode System in a compliant model view of P,M and T
resulted in the components as follows:-

1. P = HCOs that are available within the UI and presented by the HCA as
a variety of graphical widgets which provides a specific policy.

2. M = HCO operations that are implemented on the HCS. These mechanisms
are provided at the server end in response to the requests generated by the
policy generated by UI actions.

3. © = Socket Communication between the HCA and HCS

Binding Rule

• Downcall
This is implemented as a socket request from the HCA to the HCS with a
protocol that allows the particular HCO to be identified by the HCS.

Policy information is in the form of which HCO is invoked and its associated
parameter.

• Upcall
Feedback to the policy is provided in the form of a reply to the socket
request for each downcall when connecting via a synchronous protocol.

The protocol that provides the binding rule clearly achieves the two-tuple
requirement of an downcall and an upcall.

Determ ining Compliance

Determining that for all policies there is a binding rule that matches it to the
underlying mechanisms.

Figure 6.6 shows how the compliant systems view of the physical view of the
HCS is realised.

www.manaraa.com

CHAPTER 6. APPLICATION COMPLIANCE 129

Logical View

HyperCode
Assistant

Communication Channel
<-------------------------------------- H HyperCode Server

HCA UI operations

"o 0 0— o -o -o
■O

CO
> cl _o O

LU LU 0
CL
X

CL
ECD LU

Compliance View
Socket

Request

HCS operations

■*->
0 o

n
O o■+-*
o o

CO i_
CL Socket

Reply

o 0 0-t—>
TD CO>

o
CL

■o
o

- o
O

I I I LU 0
CL
X

CL
C

CD LU t

Downcall

Policies Binding
Rule

------------ ►
Mechanisms

Upcall

Figure 6.6: Physical Model of the 7T-SPACE HyperCode System as a Compliant
Systems Architecture

Having determined that the interface that will be used to specify process
models that are compliant, the meta-process, that is used for structuring the
process models, can now be described.

6.4 T he Towers Software P rocess Framework

The Towers Software Process Framework was designed to provide support for
dynamic organisations [31]. Essentially the Towers Framework provides the con
struct in the form of a set of Nodes to represent a process model instance and
an associated meta-process, Process for Process Evolution(P2E), which provides
support for the evolution of process models through the use of a management
process to monitor, manage and install any required changes.

The P2E meta-process provides a framework that incorporates some form
of organizational and management processes. These organizational and man
agement processes includes the monitoring of a process model via its feedback,

www.manaraa.com

CHAPTER 6. APPLICATION COMPLIANCE 130

detection of the need to change for the monitored process, identification and se
lection of the types of method now required in response to that need to change
and the installation of that method into the process model.

An evaluation to determine the generic properties of the Towers was con
ducted in a previous experiment[78]. This evaluation tested the generic property
by implementing a model of a real-world software process framework, the Ra
tional Unified Process(RUP)[38], by using the Towers framework. The general
conclusion from the thesis was that the Towers framework was sufficiently flexible
to model a real-world process model due to its approach of viewing processes in
terms of the operational process and a meta-process which manages its evolu
tion. A parallel can also be made to the design of the csa model where they are
described as only policies, mechanisms and a rule that binds them.

The key strength of the meta-process lies in the way the development nodes
were structured as a tower to manage the complexity of multiple products and the
multiple dependencies between the products. In addition, each development node
is structured such that development processes are separated from, but associated
with, the product. This is coupled with a P 2E to support any required changes
which the original process was not designed to support. A summary of these
ideas were presented in the FEAST 2000 workshop[79].

A Short D escription of the Towers

The Towers Software Framework is described briefly to understand its major
components. In general, the Towers Framework consists of a set Nodes which are
used to represent the operational process and an associated meta-process called,
P2E to manage its evolution. The Nodes are organised in what is termed a
Tower. Initially the decomposition might look like a tree but as the Nodes can be
decomposed into different views which are orthogonal to other decompositions,
this results in a multi-dimensional structure, a Tower.

1. Nodes

• Specification - This provides a description/definition of the product to
be produced

• Product - This is the resultant product generated by the Develop(see
below) operation based on the definition of its Specification

• Five Operations

www.manaraa.com

CHAPTER 6. APPLICATION COMPLIANCE 131

(a) Specify - This operation allows changes to the Specification com
ponent

(b) Develop - This operation generates a Product that is based on the
definition described by Specify

(c) Decompose - This operation decomposes the node into child nodes
which themselves are Tower Nodes where each will have its Spec
ification, Product and the five Tower operations.

(d) Build - This operation builds an intermediate product based on
the Product in the child nodes. This intermediate product can be
used by the Develop process if the Specification contains details
for building a product.

(e) Verify - This operation Verifies that the product that was gen
erated in the child nodes is compatible with the Product in the
current node.

2. P 2E - A meta-process that supports Dynamic Evolution. It is made up of
the following components:-

(a) Managing - a process that sets the objective to be achieved

(b) Realizing - organises the installation of a process to achieve the objec
tive set by Managing

(c) Technology - searches the types of methods and produces the meth
ods (process models) to be used by Realising.

and the following operations:-

(a) Install - installs the required changes in the monitored Node.

(b) Feedback - detects the feedback from the monitored Node.

(c) Bidirection Information flows between Technology, Realizing and Tech
nology

Figure 6.7 shows the core components of the Towers Software Framework and the
interactions between the Nodes and the P2E meta-process.

7T-SPACE description of the Towers M odel

There is an implementation of the Towers Model in PML that is enactable on
the ProcessWeb system. An exercise was undertaken to describe the Towers in

www.manaraa.com

CHAPTER 6. APPLICATION COMPLIANCE 132

P2E Node

Feedback

Information Flows within P 2E

Realising

Technology

Manager
ProductSpecification

develop
 >

Feedback
 ► Information Flows between P 2E and Node

edit
 ► Operations

Figure 6.7: The Tower Model which consists of the Node(including Operations)
and the P2E Metaprocess

the 7T-SPACE language. The definitions of the Towers in 7T-SPACE are included
in appendix B.

D eterm ining the Compliance in Towers

Com ponents

1. P = The management processes modelled by the Technology, Realizing and
Managing components within the P2E Node.

2. M = The entities, Specification and Product, and the five operations that
are represented by the Tower Node.

www.manaraa.com

CHAPTER 6. APPLICATION COMPLIANCE 133

3, 0 = The flows of information represented by the Installs and Feedback
communication channels between The P 2E and the Tower Node.

Binding Rule

• Downcall
Install communication channel to support the install operation

Policy information are in the form of which HCO is invoked and its associ
ated parameter.

• Upcall
Feedback communication channel to support the feedback operation

Determ ining Compliance

Figure 6.8 summarises the result of the applying the csa-model on the Towers
Software Framework.

6.5 Integration o f HCS and Towers

Having described the different layers in detail, the next logical step is to integrate
the HCA and the Towers in order to determine if the csa model can be applied
to the integrated model. The integration illustrates the first attempt to utilise
two different compliant layers in order to construct another compliant layer. The
result of this integration will allow a better understanding of how two compli
ant layers can be integrated and if this integration will continue to result in a
compliant layer itself.

6.5 .1 S im plifications o f Towers

A simplification of the Towers framework was derived from the Arch Ware [61,
59] project. This simplified model was more generic and thus allowed an easier
integration of the Towers and HCS. The simplified Tower is equivalent to the
Tower that was described in section 6.4.

Table 6.3 shows the refinements that has been made in order to simplify the
operations of the Tower by integrating the Towers with the HCA.

Figure 6.9 shows the integration of the HCS into the Towers Model.

www.manaraa.com

CHAPTER 6. APPLICATION COMPLIANCE 134

Logical View

P 2E Node

Technology

Realising

M anaging

Install

Feedback

> §
i■■■■■ * '

Specification
develop

---------- > Product

------- - . A--------1——

CD >>CD CDc C OCD V) oTO cC ro SICD 0) o2 OH CD1-

Compliance View

Install

o-tX
LU

entities

Feedback

oa>CL
C/5

o3TJO

operations

f

Binding
Rule

Policies Mechanisms

Upcall

Figure 6.8: The result of applying the csa model on the Towers Software Frame
work

6.5 .2 W ebServices

The WebServices[17] technology was used as the communication channel between
the Towers operations and the HCS operations.

6.5 .3 D eterm in in g th e C om pliance o f In tegrated H C A and
Towers

At each layer, the HCS and The Towers Framework has already been determined
to be compliant to the abstract policy needs. The measure of compliance will now
be applied to a concrete integrated layer in order to determine if the integrated

www.manaraa.com

CHAPTER 6. APPLICATION COMPLIANCE 135

Original Operations Refinement
Decompose Partition (Towers)
Specify Refine (Towers)
Verify Satifies(Towers)
Develop Evaluate(HCS)
Build (Towers) Compose operation from VM lib, 7T-SPACE,

directly accessible from the HCS

Table 6.3: Refinement of the Original Tower operations

Tower Node x-SPA CE HCS

i i

WebService
Specification Product HyperCode

Server
HyperCode
Assistant

develop
 ►

Communication
Channel

Figure 6.9: The resultant architecture of integrating the Towers Node with the
HCS

system can still be deemed compliant. The csa model for determining compliance
is applied to the integrated system. As before, a sample implementation of the
software was contructed in order to test for the feasibility of constructing the
system from the view of compliance.

C om ponen ts

1. P = Tower Node operations

2. M = HCO provided by the 7T-SPACE HCS

3. © = WebServices endpoints that support the basic request and reply pro
tocol

www.manaraa.com

CHAPTER 6. APPLICATION COMPLIANCE 136

Binding Rule

• Downcall
This is implemented as a WebServices request to a server which is routed
to the HCS.

Policy information are in the form of which Towers Operations have been
invoked.

• Upcall
Feedback to the policy is provided in the form of reply to the Towers Op
eration

D eterm ining Compliance

Figure 6.10 summarises the application of the csa-model on the integrated Towers
and HCA.

6.6 C riteria for A pplication C om pliance

6.6 .1 S ta tic C om pliance

Static compliance is achieved by the integration of the Towers and HCS. This
compliant layer provides the following policies which can be used by any process
models.

P2E

1. Managing

2. Realising

3. Technology

Tower Node/HCS

1. Partition

2. Refine - five HyperCode Operations

www.manaraa.com

CHAPTER 6. APPLICATION COMPLIANCE 137

Logical View

Tower Node n-SPACE HCS

V t

Specification
d evelop

------------> Product

---------A-----1--

WebService
<------------------N

Communication
HyperCode Channel HyperCode
Assistant Server

Compliance View

entities operations Service
Request

HCS Operations

£
CD

CO
-O
CD

Si

"O
LU

0)a3
CD
>

LU

CDTJO
CL
X

LU

CD"OO
C LE

Service
Downc Reply

Policies L_ Binding X Mechanisms
Rule -----

Upcall

Figure 6.10: The resultant model from applying the csa determination model on
the integrated Towers and HyperCode System

6.6.2 D yn am ic C om pliance

In order to support dynamic compliance, a feedback loop and meta-process were
required to detect the need for evolution, enacting the evolution process and for
the installation of the new processes into the subject process model. These are
provided by the P2E meta-process. The result of the integration is a meta-process
that can now be applied to other software layers.

6.7 Sum m ary

This chapter described the design and the implementation of the final compliant
layer in order to achieve tool application compliance. This layer consists of a

www.manaraa.com

CHAPTER 6. APPLICATION COMPLIANCE 138

HCS for constructing process models and a software process framework, Towers,
that allows the structuring of each HyperCode System instance. Both layers were
constructed and determined to be compliant after which they were integrated to
provide a compliant layer.

The P 2E that operates on Tower Nodes provides an evolution meta-process
which allows for the support of process evolution.

The model for measuring compliance was then applied separately to the dif
ferent layers in order to determine if they can be viewed in a compliant manner.
Implementations of the HCS were undertaken in order to verify that the individ
ual components that make up a compliant system have an equivalent enactable
form. A basic description of the Towers software framework was completed in
7T-SPACE. However, the PML model was sufficient as a working meta-process
that can be used for our prototype.

www.manaraa.com

C hapter 7

E valuation of C om pliance

7.1 Introduction

This chapter is concerned with the evaluation of the csa model in terms of its
suitability for constructing extensible PSEEs which provide for better support
of process evolution. In order to achieve this, an example PSEE, which utilises
each of the compliant system layers of language, VM, and Development Inter
face/Evolution Meta-Language that were described in chapters 4, 5 and 6 respec
tively, was constructed.

The chapter starts by describing the objectives of the evaluation and the
prescribed processes for achieving them. This is then followed by a summary of
relevant results. In order to highlight the distinction between a PSEE that was
constructed on csa layers and that of a non csa-based PSEE, some illustrations
of non-compliance are also given. A discussion will then be provided on the
approach for re-adapting a non-compliant PSEE into one that is compliant to
the new policy needs. An investigation is undertaken in order to explore how a
csa-based PSEE can achieve a form of dynamic compliance where it is able to
constantly monitor and evolve itself.

7.2 T he Evaluation Approach

As there is currently a lack of available concrete data on the effective use of current
PSEEs for supporting real-world evolvable software development processes, the
evaluation approach will be conducted in a qualitative rather than quantitative
manner. It is expected that the results from this qualitative study will contribute

139

www.manaraa.com

CHAPTER 7. EVALUATION OF COMPLIANCE 140

towards futher quantitative studies in this area of PSEEs.

7.2.1 O b jectives

Two key objectives were directly apparent at the beginning of the investigation.
A third was added later during the course of evaluating the first two.

The first objective is to evaluate the definition and resultant model for mea
suring system compliance as detailed in chapter 2. In particular the aim is to
evaluate if the model is both sufficiently generic and complete for determining
the property of compliance for a system. In order to achieve this flexibility, the
determination of compliance provided different types of compliance such as layer
compliance and system compliance. Evaluation is required to determine if the
model is sufficiently complete for it to be useful for system construction.

Each layer has already been determined to be compliant by firstly determining
that they can be viewed in terms of a csa model. That is, that the expected policy
needs are met by the available mechanisms and then implementing the required
mechanisms that will be used by the policies in the layers above. In order to
determine if a system has system compliance, however, will require the integration
of all the compliant layers into a complete application and then determining if
the csa-model can be applied to the complete system. Thus it was necessary to
construct the experimental PSEE application to provide a sufficiently concrete
example. The layers will be constructed by describing how the policies in the
upper layer can effectively utilise the mechanisms that were provided by the
immediate layer below.

The second purpose is to compare the degree of flexibility that is provided by
a csa-based PSEE with one which was built without compliance in mind. The
focus of the investigation will be to deterimine if a csa-based PSEE can provide
better support for process enactment and evolution compared to a PSEE that
was constructed using conventional software development approaches. Clearly
the acid test will be for a PSEE to support process evolution that deviates from
what the PSEE was originally designed to support. The assumption is that the
process has evolved beyond what the current PSEE is capable of supporting and
thus would require more fundamental changes to the underlying core of the PSEE.
Of interest would be changes that could not be resolved by changing the model
at the level at which it is specified.

A third objective was later derived from the second which was based on the

www.manaraa.com

CHAPTER 7, EVALUATION OF COMPLIANCE 141

use of the flexibility of a csa-based system for providing better support of an
evolvable process.

7.2.2 P rocess

The evaluation process involved the use of a sample process model where evolution
is required over the course of its process enactment. As a comparison with a
current PSEE, ProcessWeb[l03], which provides a web-based frontend to the
ProcessWise[16] PSEE, will be used. Some components of the sample model will
be constructed and enacted on both PSEEs in order to evaluate their level of
support for evolution. The csa-based PSEE will firstly be evaluated for system
compliance. As the determination of system compliance is dependent on each
layer possessing the property of layer compliance, the results from applying the
csa-model on each layer, that were detailed in the previous chapters, are used in
this evaluation. The same process that was used for determining layer compliance
is then repeated to form a compliant PSEE which could then be checked for
system compliance. This is achieved by repeatedly binding the policies on the
upper layer onto the mechanisms in the layer below.

Actual implementations of mechanisms were required to be used as a basis for
evaluation as the definitions of csa components, policies, mechanisms and bind
ing rules were themselves in too abstract a form to demonstrate the feasilibity of
the model. The construction process, that is the implementation of each compli
ant layer, and the resultant software that was produced using the process, were
used as a proof-of-concept to discover if the compliant attributes of mechanisms,
policies and binding rules, do have an equivalent more concrete and executable
element. The implementation and the integration is also used as a test for com
pleteness of the csa-model in order to show that the model could be used across
different models at different layers of abstraction.

At the highest layer, the policies will be determined by the policy needs of a
process model. As an example, a sample basic process model will be described
and used in order to evaluate if the 7rPVM is compliant to the policy needs of the
process model. Essentially, this model will provide the top most policies which
will utilise the underlying mechanisms that are provided by the PSEE.

In summary, the evaluation process can be detailed as follows:-

1. Determining compliance of each layer

www.manaraa.com

CHAPTER 7. EVALUATION OF COMPLIANCE 142

(a) Decomposition of the system into a set of basic csa components - Mech
anisms, Policies and Binding Rule.

(b) Determination that the Binding Rule supports the basic upcall and
downcall requirement

(c) Determination of the existence of Compliance (T) within the layer

2. Determining system compliance

(a) Integration of all the system layers by mapping all policy requirements
from the upper layer to the mechanisms provided in the lower layers.

(b) Review of all the Polices and Mechanisms in the Integrated System

(c) Derivation of the Binding Rules from the integration of the compliant
layers for the Integrated System

(d) Determination the existence of System Compliance(r) within the In
tegrated System

3. Application of Evolution Scenarios

(a) Description of the W-C (see section 7.4.1) model using the 7rPVM

(b) Description of some evolution scenarios of the W-C model and illus
tration of how they can be supported by the 7rPVM

(c) Provision of some illustrations of evolution that were required by the
process model that were not designed into the original 7tPVM in or
der to determine if it is able to support this form of evolution. Two
scenarios, where the process models might require more fundamental
changes, which cannot be catered by specifying the solution in the
Process Web are shown.

7.3 Evaluation of com pliance on in tegrated lay
ers

Taking a top down approach, the sequence of integration will be as follows:-

1. Application Layer to Language Layer

2. Language Layer to VM Layer

www.manaraa.com

CHAPTER 7. EVALUATION OF COMPLIANCE 143

In the following sections, the mechanisms of each compliant layer, Language,
VM and Application, will be derived from those that were already described in
chapters 4, 5 and 6 respectively. In order to carry out each of the evaluations
listed above, the process of integrating the layers involved will be firstly described
in some detail. The purpose of the description is to explore and discuss the
issues that were faced during integration in order to better understand the role
of compliance during integration. After the integration, the determination of
compliance is applied to the resultant integrated layer.

7.3.1 In tegratin g th e com pliant layers

The determination of compliance has already been applied to each individual Ap
plication and Language layers based on the abstract policies that were defined.
The determination of compliance will then be applied across the application lay
ers after they are integrated, based on the criteria of evaluation as detailed in
chapter 4. The integration process will then be described and then the model for
determining the compliance of the integrated layers will be applied.

A pp lica tion and Language layers

In order to integrate the Application and Language layers, the mechanisms of
each layers are listed. The mechanisms at the Application Layer will form the
policy needs which the mechanisms at the Language layer will need to support.
For the Application Layer, the mechanisms that are available are in the form
of an integrated 7T-SPACE HyperCode System and the P 2E Meta-process. The
integrated mechanisms that are available at the Application layer are thus:-

1. HyperCode Operations

(a) Evaluate

(b) Implode

(c) Explode

(d) Edit

(e) GetRoot

2. Towers Operations which are the integrated operations available in the P2E
and the Towers Node.

www.manaraa.com

CHAPTER 7. EVALUATION OF COMPLIANCE 144

(a) Specification

(b) Product

(c) Five Operations - Specify, Develop, Build, Verify, Decompose

From the viewpoint of the Language layer, these Application layer mechanisms
are the policy needs that the Language must support.

The mechanisms provided by the language, in terms of the 7T-SPACE abstrac
tions, supports the policy needs of all the Tower Operations. This is demonstrated
and described in 7T-SPACE in appendix B. The binding rule is formed by realising
the model and then programming it in a process modelling notation. The binding
rule is thus described informally, where the downcalls, are all implicitly derived
from a programmer’s idea of the mechanisms that are required to support the
components and operations of the Towers.

The mechanisms to support the HCOs however, are not provided at the Lan
guage layer. The reason is that the mechanisms provided by the language are not
able to support the HCOs. The actual mechanisms to support the HCOs were
implemented within the VM layer.

Language and V M layers

The integration of the Language and VM layers follows a similiar process to
that of the previous integration of the Application and Language layers. The
mechanisms of the Language layer will now serve as the policies for the VM
layers. In order to describe the process, a recap of the mechanisms are provided.

At the language layer, the mechanisms provided by the 7T-SPACE language
are the types and process abstractions available. The types are in the form of
P rim itives which includes Nam es and Channel types, and Aggregates which
consists of the Port, Behaviour, Com ponent and Connector types. The
three types of process abstractions are in the form of the 7r-calculus expressions
for specifying the behaviour and constraints within each of the types, the oper
ations and annotations which provide programmable syntax and semantics and
the evolution operators which allows the specification of events and their response
behaviour as specified by the 7r-calculus expressions.

As the mechanisms provided by the VM are at a lower level, in the sense that
it is more concrete, the mechanims described are in terms of libraries of functions

www.manaraa.com

CHAPTER 7. EVALUATION OF COMPLIANCE 145

and data structures. VM mechanisms consists of Libraries which provide facili
ties for Process Control and Com munication Control. The data structures
provided are abstractions for each of the 7T-SPACE types and a Global Control
data structure for keeping the entire state of the VM.

Having described the mechanisms, the process of integrating them will now be
described. In general, the process involves the mapping of the policy needs from
the Language layer onto the mechanisms provided by the VM layer. The term
’mapping’ is suitable as it is a sufficiently generic term that indicates a relation
between the mechanisms and policies between the layers.

7.3 .2 D eterm in in g C om pliance

The integration process was generally straightforward as the layers had been
designed to be compliant in the first place. In fact the csa-model served as a
reference model for decomposing systems such that during the implementation,
most policies are supported by mechanisms. There was only one exception where
this was not true. The policy needs of the HyperCode System were not com
pletely met by the available mechanisms in the language. However, this was due
more to not understanding how the original HyperCode System was designed and
implemented. This characteristic is something which is common during the soft
ware construction process. The HyperCode policies required access to some VM
properties which the language did not provide. Having a language that supports
active compliance did help in this case as it allowed the use of VM mechanisms
from the Application layer.

The determination of the csa-model is applied to the integrated model and
the process of determining compliance is performed on it. The result of the
integration and compliance determination is show in figure 7.1.

7.3 .3 Sum m ary o f findings

The integrated system forms the csa-based PSEE which was used to understand
how a csa-based PSEE can better support the deviated form of evolution. Some
discussions of the findings during the course of integrating and applying the csa-
model on the integrated PSEE application is required. The discussions involve
the use of the csa-model to guide the course of the integration.

The csa model can be viewed as sufficiently complete as it is able to model

www.manaraa.com

CHAPTER 7. EVALUATION OF COMPLIANCE 146

Models
i k

HyperCode
Operations

f
n-SPACE

Application

3
HyperCode System Meta-process

HCO
j

HyperCode
Equality Rules

f

o
Domain
perations

Language

VM

Meta-Prcess
i

WebService

HyperCode
System

71-SPA C E
k

Language
Mappings

f
ProcessBase

Towers
i

Implementation
Mappings

Ti-SPACE

Figure 7.1: The resultant Integrated model of Application, Language and VM
Layers

software layers at different levels of abstractions. It is also not unexpected that
the lower software layers that are closer to the hardware have more well-defined
policies and mechanisms, as there has been a lot of research completed in con
structing these layers. The higher layers are more abstract in nature and this
resulted in the binding rule being quite abstract with different possible interpre
tations. During the integration exercise, certain interpretations of the bindings
had to be assumed. The approach was to ensure that these abstract layers could
easily accomodate change and to introduce a meta-process to manage the changes
required.

7.4 Evaluation o f a csa for a PSE E

The integrated software application now forms the prototype PSEE which can
now be evaluated for the deviated form of evolution. In order to achieve this, a

www.manaraa.com

CHAPTER 7. EVALUATION OF COMPLIANCE 147

sample process model was used to determine the application policies that need
to be supported by the underlying mechanisms that are provided by the PSEE.

Some illustrations of evolution will be described later that provide a better
understanding of the type of evolution support that a csa-based PSEE can pro
vide.

7.4.1 A Sam ple A p p lication P rocess M odel: T he W riter

C hecker (W -C) M od el

The Writer Checker(W-C) process model[18] is an example process model that
was designed and constructed in order to study the most basic representation
of a simple process. The intention of making it simple was driven by the need
to study the evolution needs of such a model and thus enable the testing of the
evolution support abilities of an environment to be conducted.

D escription of the M odel

As the name implies, the W-C model consists of two components, a component
called Writer and a corresponding component that is labelled as the Checker. A
communication link connects both components together which allows the com
ponents to send messages between the two components.

The behaviour of the Writer is to write a message, and then send it to the
Checker to be verified. The content type of the message can be, for example, a
piece of code or just a report of sorts. It can be assumed that the content does
not matter as the assumption is that the Checker will know how to check the
contents. After sending the message, the Writer then waits for the response from
the Checker and makes the refinements that were suggested by the Checker. The
cycle continues again until the Checker’s response is that there is no need to make
any changes to the content.

The behaviour of the Checker is to check the contents that have been sent by
the Writer against some criteria which the Writer might or might not know and
to then provide the result after performing the checking.

This model is surprisingly simple but it embodies the core characteristics
that are present in most process models. Some key issues can be summarized as
follows:-

www.manaraa.com

CHAPTER 7. EVALUATION OF COMPLIANCE 148

1. Each component has some behaviour that can function independently of
the other

2. There are interactions between the components

3. The interactions defines the dependencies between the components, which
creates the external influence on the behaviours of the process model

This model can also be considered as a client-server model where the Writer is
the client that submits requests to the services provided by the server and awaits
the response from the server. In order to keep the model simple, the following W-
C cycle can be defined. Writer writes message. Writer sends message to Checker.
Writer waits for reply indefinitely. Checker is always in the waiting state unless
it receives a message from Writer. Checker checks the document and produces
a response to Writer. Writer receives a reply from the Checker and decides if it
needs to write another document. The cycle is repeated if the decision is to write.

The enactment of this process model is very much like the execution of a simple
program if no changes are required to the model for it to be useful. However,
changes are bound to happen and this results in a few possible evolution scenarios
which will be described to illustrate the complexity of process evolution.

Some scenarios of evolution are:-

1. Evolve from one W to one C to one W to many C

• Description
There are now more Checkers for that one Writer. Writer will now send
all the writings to multiple Checkers and await for the replies from the
Checkers. This change will result in a few interesting scenarios.

For example, should the writings be sent to all the C when W submits.
Or can W send to only a few of the W or even one of them?

2. Evolve from one W to one C to many W to one C

• Description
This scenario is similiar to the previous evolution scenario except that
the situation is now reversed where there are many Writers that can
submit their writings to one Checker.

3. Evolve from one W to one C to many W to many C

www.manaraa.com

CHAPTER 7. EVALUATION OF COMPLIANCE 149

• Description
The situation in this scenario now is rather like a composition of the
previous two scenarios.

This list of evolution scenarios are just an indication of how complicated
evolution can become even though the original process model is perhaps the
simplest possible.

Figure 7.2 shows the illustrations of the W-C model and the evolution sce
narios described. The diagram also shows a Switcher which is introduced as a

Basic W-C Model

Potential Evolution Scenarios

One Writer to Multiple Checkers Multiple Writers to one Checker Multiple Writers to Multiple Checkers

Figure 7.2: The W-C model and some illustrations of W-C model evolution

connector between the Writer and Checker. The Switcher functions as a routing
interface between the Writer and Checker.

7.4 .2 C om parisons o f E volu tion M od elin g and Support

Comparisons are now made with reference to what is possible using the Pro
cess Web PSEE. An implementation of the Writer Checker model in Process Web
is detailed here[18].The types of evolution that are looked into can be classified
into designed evolution, where the types of evolution supported have already been
catered for within the language, and deviated evolution, where the evolution is
not catered by the language due to earlier assumptions made on the concept of a
process.

www.manaraa.com

CHAPTER 7. EVALUATION OF COMPLIANCE 150

Designed Evolution

This is a type of evolution where the support is already designed and thus catered
for the PSEE. An example of this is the ’if then else’ expression where the condi
tions for the evolution and the prescribed process in response to the condition are
specified. This type of evolution is generally well known where the response to the
condition is also well defined. Designed Evolution can thus be formalised and be
well supported by current PSEEs. As this is well supported within Process Web,
a description in 7T-SPACE is provided in order to illustrate how the 7T-SPACE
language supports this form of evolution.

7T-SPACE description of W -C M odel

The W-C Model will now be described in 7T-SPACE in order to show how it can
be specified in the language. These definitions are based on the paper on n-
SPACE[18]. An illustration is also provided to show the 7T-SPACE specification
for describing the evolution scenario, where the W-C model is evolved to support
multiple Writer Instances.

The W-C model consists of three components which are defined in 7T-SPACE
as follows:-

7T-SPACE model of Writer

d e f in e component type Writer

port require„check: Request [r e c e i v e , send,module , r e p l y] I (
behaviour write : Wri te[require_check]

>

?r-SPACE model of Checker

d e f in e component type Checker[supply_check:Reply[. . .]

{
port supply_check: Reply [r e c e i v e , send,module , r e p ly] I I
behaviour check: Check[supply_check]

}

7T-SPACE model of Switcher

d e f in e connector type S w i t c h e r [c a l l e r :R eply [. . .] ,

www.manaraa.com

CHAPTER 7. EVALUATION OF COMPLIANCE 151

c a l l e e :Request □]

■C

port c a l l e r : R ep ly [. . .] II
port c a l l e e :R equest [. . .] I I

behaviour s w i t c h :S w i t c h [c a l l e r , c a l l e e]

>

The W-C model is composed of the three components where the Switcher
ports are connected to both the Writer and Checker components.

7T-SPACE for composing the W, C and S.

compose WSC

{
Wi: W r i te r l l l

SI: S w i t c h e r l [c a l l e r ,

c a l l e e] I i
C l :Checkerl
where

a t ta c h Wl@request_check to Sl@ caller ,
a t ta c h Cl@supply_check to Sl@callee

>

Specifying designed evolution
7T-SPACE for composing and decomposing the W, C and S to generate a new

set of C and S instances to cater for a Checker and Switcher that deals with
multiple W instances.

compose WSC2

decompose WSC||
C2: Checker2| |

S I :S w i t c h e r [c a l l e r , c a l l e e] I |
Cl -.Checkerl

where
rep lace Cl by C2,

recompose(Wl, S1,C2)

www.manaraa.com

CHAPTER 7. EVALUATION OF COMPLIANCE 152

The construction of the model using the 7T-SPACE HyperCode System is il
lustrated in figure 7.3 Figure 7.3 shows the illustrations of the W-C model and
the evolution scenarios described.

[Checker!

u n ti l Irr i S

jnixj
P ersistence Edit Options P e rs is te n t * E d * O p tion s

Evaluate| EvaluatePspace| Evaluate | EvafciatePspacej Evaluate

<% ps

let W riterPort <- R cqucst(rcquest <- [""

let W riterBehaviour <- W rite(c <- Write

let W riterCom ponent <- W riter(supply

% ps>

let Sw itcherPortl <- R equest(request <- ■

let SwitcherPort2 <- Reply(request <- i

let Sw itcherBehaviour <- Switch(s <- Switcl

let Sw itcherCom ponent <- Switcher(s < - Sv

% p s> j

<% ps

let C heckerPort <• Request(request <■

let C heckerBehaviour <- Check(c <- C

let CheckerC om ponent <- Checker(c •

% ps>

Urie: 2 t , Column: 0.Column: 1 Uns: 36, Column:!)

Ed* Options

com pose W 1 P 1 C 1 (5 5 B B

Uns: 1, Column: 23

 ► Dragging and Dropping HyperCode Links

Figure 7.3: Construction of the W-C model using the HyperCode System

Scenarios of D eviated Evolution

The evolution scenarios reveals that even though a system can be designed to be
as flexible as possible, there will always be a limit to the flexibility of a systems
architecture. A PSEE with static compliance will support all forms of evolu
tion that conventional PSEEs were designed and implemented to support as was
clearly illustrated by the evolution example above. However, only a PSEE which
supports active compliance will be sufficiently flexible to cater for the types of
evolution which demand more fundamental underlying changes to ensure that
the process model in the PSEE is still compliant to the real-world model. In this
section we explore and detail the possible forms of deviated evolution which can
not be designed and thus supported by implementing them using the mechanisms
provided by, for example Process Web.

The main types of deviated evolution appear to be caused by changes that
cannot be catered for by making changes within the same level as that which
the application is executing. The consequence of this is that the evolution itself
cannot be detected, managed and resolved at the same level as that at which

www.manaraa.com

CHAPTER 7. EVALUATION OF COMPLIANCE 153

the PSEE language is enacting. This type of evolution requires a greater ’trans
parency’ to the available underlying mechanisms.

Two types of evolution that were briefly detailed in a paper presented at'the
Ninth European Workshop on Software Process Technology[80] are illustrated
with reference to how a csa-based PSEE can be better customised to support the
deviated form of evolution.

• Policy changes which require feedback from the scheduler and the ability
to select the best scheduling scheme

• Communication abstractions

7.5 N on- C om pliance

When the underlying mechanisms do not provide sufficient support for the policy
needs, or there is no valid binding rule for the policy to the underlying mech
anisms, then the software layer is deemed to be non-compliant. The following
sections detail the reasons why they were non-compliant and the approach to
making the system more compliant to the needs of the application.

7.5.1 C om m unication m odel

N on- Com pliance

This is a mild form of non-compliance in that it is more of an optimisation for
implementing the communication support mechanisms at the VM. The original
mechanisms for buffering within the communication model were currently imple
mented in ProcessBase. This is clearly sufficient for the prototype application,
however, there were some mechanisms provided by the Operating System for
these functions. This is sufficient but the communications model is improved if
it is implemented at the level where the mechanisms can be modeled in a cleaner
fashion. Clearly this non-compliance is a result of the duplication of similiar
mechanisms across the system.

In addition, the initial design and implementation were determined to be
compliant as the implementation assumed that the underlying networking mech
anisms were unavailable. The mechanism was later introduced when we utilised

www.manaraa.com

CHAPTER 7. EVALUATION OF COMPLIANCE 154

the ArenaOS for some experiments. This provides a good comparison with Linux
which is an OS which is non-compliant in this case.

M aking it Compliant

In order to make it compliant, the functions in ProcessBase which implemented
the communication mechanisms are still retained, thus ensuring that the bind
ings are retained. The only changes required are to bind these functions onto the
actual mechanisms that are available at the Operating System level. With the
ArenaOS, some work was undertaken to customise the Networking Manager. Af
ter which, some initial work was required to expose this interface to ProcessBase.
In this case, we utilised one of the core communication opcodes and customised
the parameters that invokes the mechanisms provided by the Networking Man
ager.

7.5 .2 T hread C ontrol m odel

Anderson [5] described how kernel threads and user threads each have their own
issues and thus they are provided as a type of abstraction over both in order to
resolve these issues. The issues that were described are similiar to those that were
faced by the example process models. The only difference is that our abstraction
is now provided by the binding rule in a compliant model.

Non-Com pliance

In some scenarios, the default in-built threads scheduling scheme did not provide
sufficiently fine-grained thread control facilities that were required by an example
process model. Using a non-compliant OS Linux did not allow a process model
to have access to different thread scheduling schemes which are more relevant to
the process model.

Making it Compliant

An attem pt was made, in order to resolve the lack of thread scheduling control
by substituting the non-compliance OS with one that provides this facility. The
work of relating the importance of thread scheduling mechanisms being made
available as a form of feedback for process models are addressed in a chapter

www.manaraa.com

CHAPTER 7. EVALUATION OF COMPLIANCE 155

of a book[30] with the tentative title of ’’The Impact of Software-Architecture
Compliance on System Evolution” .

An implementation scheme for running the model on the ArenaOS was de
signed. This provided more control to the process model for accessing and speci
fying the types of scheduling schemes that are available from the scheduler. The
threads can thus be changed and fine-tuned by the process model. In this ex
periment, the change was done manually as a proof of concept. Subsequent to
the work reported in this thesis a dynamic loader for the ArenaOS has been
developed[10]. Its evaluation within a complete implementation has not been
undertaken but it is clear that it should be quite straightforward.

Figure 7.4 contrasts the non-compliant and compliant architecture for thread
scheduling.

Physical View

Channel,
Operation Call

Channel Call

Exceptions Function calls

C function callsInterrupts

Components, Connectors, Operations

Nodes, P2E

x86 instructions

Kernel,DSO(Linux)/Kemel,
HWO(ArenaOS)

views, operations

Compliant

Scheduling policies

Logical View

Non-Compliant

Scheduling policies

Thread Scheduling mechanisms

Better utilisation
of OS scheduler

t;
Reimplemented Scheduler/

Thread Scheduling algorithms
which might not be feasible

Thread Scheduling mechanisms

Limited or no
utilisation of OS

scheduler

Figure 7.4: A Compliant Architecture view of the Thread Scheduler mechanism

Both these scenarios clearly demonstrate that a csa-based application is able to
support the deviated form of application by allowing the underlying mechanisms
to be exposed to the language layer. Essentially this allows all the underlying
mechanisms to be used to support the current expected policies that have been
pre-defined and the new policies that might appear as the real-world process
domain changes.

www.manaraa.com

CHAPTER 7. EVALUATION OF COMPLIANCE 156

7.6 Sum m ary

The evaluation for compliance for each layer was derived from the definition of
a compliant systems provided in chapter 2 and the criteria that were relevant to
each level that were as described in chapters 4, 5 and 6.

A complete PSEE, the 7rPVM, was constructed progressively from each com
pliant systems layer. The compliance measure model was then applied to the
integrated system in order to determine system compliance. A simple applica
tion process model was introduced and certain evolution scenarios were described
to evaluate the static compliance and dynamic compliance of the 7rPVM.

Some illustrations of deviated evolution which resulted in non-compliance were
discovered when the process model required more fundamental changes to the un
derlying available mechanisms. These were detailed and understood after which
the approach to make them compliant was described. The existence of non-
compliance reveals that even when each layer is compliant, the integration of the
compliant layers might result in a non-compliant systems architecture. The use
of compliant layers however, allowed these issues to be resolved by a technique
that can best be described as exposing underlying layers.

The claim that a compliant systems architecture is able to provide a more
flexible architecture for constructing a PSEE was also evaluated. In order to
substantiate this claim, two illustrations where evolution would require a more
fundamental change within the PSEE were shown. Even though it was not an
exhaustive test, the experiment demonstrated the simplest case for evolution
which should support most, if not all, forms of evolution.

The final model of the specific compliant model that can be derived from the
Generic Compliant model, is shown in Figure 7.5

www.manaraa.com

CHAPTER 7. EVALUATION OF COMPLIANCE 157

Generic Compliant
Architecture

Process M odel

Process M odelling Language(PM L)

Run-Time System

4
Persistent Programm ing Language

Run-Time System

Operating System

f t - I
Hardware

Specific Compliant
Architecture

Architecture V iew

Tow er Process Framework

n -SPACE ADL

71-SPACE constructs implemented as
▲ ProcessBase Library I

ProcessBase

PBAM

Linux/ArenaOS

Intel Based/Embedded Systems

Components, Upcall/Downcall V iew

Nodes, P2E

Channel Call ^ ^ Channel,
Operation Call

Components, Connectors, Operations

TJlExceptions Function calls

views, operations

Interrupts C function calls

Kernel,DSO(Linux)/Kem el,
HW 0 (ArenaOS)

x86 instructions

H Up-calls/Downcalls

Figure 7.5: A Final Compliant Systems Architecture model

www.manaraa.com

C hapter 8

D iscussion and Future W ork

8.1 In troduction

This chapter provides a summary of the conclusions that were derived from the
results that were collated from the evaluation described in chapter 7. From this
set of discussions, some possible avenues of future research are also outlined.

8.2 C om pliance M odel on th e P SE E

8.2.1 D eterm in a tio n o f a csa

The csa-model was an attempt to formalise the abstract notion of compliance
and make it sufficiently concrete to be applied to any software system. This
approach was sufficient for determining compliance but was insufficient for fine
grained measurements of compliance. The degree of compliance should be a
good indicator of the amount of effort which is useful in determining the level of
flexibility of a systems architecture.

8.2 .2 A m od el o f A ctiv e C om pliance

The previous chapters described an experiment that was designed to demonstrate
that a csa-model can be constructed for a PSEE and that it provide better support
for the deviated form of evolution. The experiment showed that the csa-model
is useful for describing systems in terms of their components at varying levels
of abstractions. The work in implementing active compliance, which allows the

158

www.manaraa.com

CHAPTER 8. DISCUSSION AND FUTURE WORK 159

support for the deviated form of evolution was completed at a design level, but it
is clear that a model can be derived from this in a straightforward manner. This
is illustrated in figure 8.1 where the meta-process model is constantly receiving
feedback.

Feedback

Install

Binding
RulePolicies Meta-ProcessMechanisms

Downcall

Upcall

Figure 8.1: The model of Active Compliance

The useful upcalls and downcalls are the feedback and install operations.

8.3 H yperC ode and th e 7T-SPACE language

The 7T-SPACE language was a work in progress during the research and thus
constant revisions were made even during the construction of the compiler. This
resulted in changes in the syntax and the semantics which changed the code gener
ation rules but such ’deviated’ evolution proved to be of benefit in demonstrating
the robustness of the csa approach to compiler construction. The final form of
the BNF and the code generation rules that forms the derived final enactable
7T-SPACE are detailed in appendix A.

The main issues during the design and implementation arose because of its
specification biased design and much of the effort was spent on removing some
language features, which were not relevant to the experiment, and introducing
some enactable elements which are useful in our construction of the prototype.

The work done on HyperCode for the 7T-SPACE language shows that the
operations that have been used are sufficiently generic for supporting most pro
gramming languages. There were some issues with using 7T-SPACE though and
they are listed as follows:-

1. Specification biased
The specification biased focus of the language resulted in a few key issues
during the initial design and the later stages. During the earlier stages, this
resulted in a BNF which is rather huge and complicated. Many attempts
were made in order to simplify the language while retaining its main ele
ments which would useful for model checking.

www.manaraa.com

CHAPTER 8. DISCUSSION AND FUTURE WORK 160

2. Type rules
Names within the 7T-SPACE and 7r-calculus in particular do not really have
the notion of types which is required for generating a compiler. Some types
were implicitly derived from some examples. Also, the types were not con
sidered as a first class entity within the language.

3. Partial evaluation
In the 7T-SPACE language, some of the operations do not return a value
immediately as the models have not completed their execution. The end
result is that during an Eval operation, the HCA is left waiting for a result
to be returned. Semantically this is correct in terms of how the language
is defined. All indications are that this could be a user interface problem
where some research inputs from the area would help to understand the
relationship between the hyperlinks and the operations that the user would
be able to perform on the hyperlinks.

8.4 C om pliance as a m ethod for construction

Within this project, the csa model was initially used as a model to determine if
a software layer is compliant to another layer. Over the course of the project,
the csa model, has in fact been used implicitly to guide the constructing of the
layers. The awareness of policies, mechanisms and binding rules within each layer
resulted in an informal method where compliance determination is used as a form
of feedback to the method. As such, the layers integrate without too much effort
as the initial effort had already been spent in constructing the system based on
the set of policies and mechanisms that were derived during construction.

8.5 T he C SA Tools

As the basic CSA tools were used for the experiment in creating a csa-based
PSEE, a discussion on their utility is useful. It should be noted that the CSA
Tools were created with support for the notion of compliance during the CSA
project[57, 58] but there were no example applications that were created in order
to experiment their utility prior to this research. The work that is detailed in
this thesis should be viewed as the first attempt at defining a concrete definition

www.manaraa.com

CHAPTER 8. DISCUSSION AND FUTURE WORK 161

and also as the first user of the CSA tools for constructing an application that
covers all layers of an application.

Having created the software using the tools, the most fundamental notion
of a csa is that of extensibility. The extensibility of a csa goes beyond that of
conventional systems due to the provisions for allowing changes to all software
layers not only from within the same layer but also from another compliant layer.

In order to describe this clearly, figure 8.2 shows the different approaches for
extending a software layer on a conventional system from that of a compliant
system.

Conventional A csa

Application E

Language E

VM E

os E

E
Application

E
Language

E
VM

E
OS

Extensions to the Software Layer

Figure 8.2: The CSA model of extending mechanisms

Conventional systems allow changes that are confined to a given layer and the
underlying layer is considered as immutable. In contrast the csa model allows
changes which are not confined to its own layer. This is the purpose of including
the dynamic loader within the ArenaOS, the opcode invocation to the PBAM
from within the ProcessBase language and the HCOs that interact directly with
its server within the ProcessBase layer. This model is also reflected in the design
of the 7tPVM where the Operation types within the language are implemented as

www.manaraa.com

CHAPTER 8. DISCUSSION AND FUTURE WORK 162

ProcessBase functions.
The CSA model thus sees the layers as all being mutable and this view assumes

that each are bound to change and that therefore there are mechanisms in place
to allow them to change. The only drawback of this approach is that of safety, the
general solution being the formalisation of meta-processes to deal with feedback
and change.

The original set of HyperCode operations were applied to the 7T-SPACE lan
guage in order to explore how a HyperCode representation might contribute to
the expressiveness compared to a text only format. This work has shed some
light on how the HyperCode System can be extended to provide a suitable form
of representation on executing component-based languages.

8.6 Future W ork

During the evaluation of the csa, the Arena OS was utilised as a compliant system
that is flexible enough to allow changes to its underlying core. This allowed the
mechanisms provided by the operating system to be fine-tuned and customised
for the ever-changing policies. This customisation is not unlike the code changing
activities of open-source operating systems such as Linux[13] and FreeBSD[49].
However, the compliant nature of the Arena OS by composing it from components
of mechanisms and policies, coupled with an explicit binding rule, has set the stage
for its next evolution. The implementation of a dynamic loader is detailed in [10].
This is key feature which should allow dynamic compliant support for formalised
models. It should also be noted that some of the future work detailed here is to
be addressed in the ongoing ArchWare[61] project.

8.6 .1 L anguage C om pliance

There were attempts to simplify the language in an architectural framework [29]
with hypercode. The work involved the removal of the basic architectural abstrac
tions in order to create a layered language. The basic Arch Ware ADL supports
a pure 7r-calculus programming approach. The language has since evolved into a
hybrid 7r-calculus together with an expressions based language. The 7T-calculus
was used to specify the structure of abstractions. The extra language expres
sions, such as loops and conditional statements, were introduced to bring a more
conventional programming element to the language. This is akin to the approach

www.manaraa.com

CHAPTER 8. DISCUSSION AND FUTURE WORK 163

taken in designing the 7T-SPACE language in that the 7T-SPACE was used more
as an ADL for structuring the process elements and, the ProcessBase language,
in the form of Operations in 7T-SPACE and Annotations, was used to provide the
process programming element.

8.6 .2 C om pliance in H ardw are

The work has only described compliance in software and the mapping of the
different compliant properties over different software layers. However, it does
not seem that too far fetched a notion for the csa model to be extended to
the hardware layer. This has already been attempted in the form of embedded
systems, with bespoke embedded processors, that best support the needs of their
target application domain. These processors has been built for a specific set
of applications and thus the mechanisms are not extensible. However, it is not
impossible to imagine the design of a reconfigurable processor. This has in some
way been attempted by code morphing processors such as Intel’s Itanium and
Transmeta’s Efficien processors. The promise of nanotech technologies should
also allow the processor changes to be performed on the fly. The possiblities of a
nano machine that changes its instruction opcodes based on the downcall/upcall
from the software will perhaps open up many exciting opportunities.

The challenge will be in building such processors and then mapping the mech
anisms and policies of an application onto the downcall and upcall operations
between the software and hardware layer. It would thus be interesting to see how
the csa-model could be applied to this layer of software to hardware interface.

8.6 .3 M echanism s and P olic ies as p rocesses

Perry[70] described how tools can be describe in terms of mechanism, policy
and structure. Here, we have shown that the systems architecture can also be
described in terms of mechanism and policy, and thus open up the possibility
that the system is able to manipulate the entire structure by itself.

8.6 .4 From D eterm in ation to M easurem ent

The current model only deals with determination of compliance. This level of
granularity is rather crude in that we can either tell if something is compliant or
not. However, there will be cases where the level of compliance can be measured.

www.manaraa.com

CHAPTER 8. DISCUSSION AND FUTURE WORK 164

This could result in the notion of partial compliance. This can also be a guide to
developing a process for making something compliant, ie how many policies are
still not supported, which would then guide the possible approaches required to
make a system compliant.

8.6 .5 D erived W ork

This section described some ongoing work which were derived from the work de
tailed in this thesis. The ArchWare[61] project is addressing some of the issues
addressed in this chapter. The Arch Ware ADL[29, 59] simplified the language
design by implementing it in layers where each construct was now strongly typed.
Even though the original library structures were adopted, they were rewritten for
the Arch Ware ADL. The approach of compiling the ADL into the ProcessBase
language is still used by the Arch Ware ADL. Simplifying the 7T-SPACE language
also resulted in several languages which focusses on different aspects within the
original 7T-SPACE language. This resulted in for example, the ADL Analysis Lan-
guage(AAL), ADL Refinement Language(ARL) and ADL Style Language(ASL)
to name but a few.

The approach for constructing a hypercode for 7T-SPACE was also adopted as
the model for the hypercode for the Arch Ware ADL. A more recent publication
which details the use of hypercode in the Arch Ware ADL for supporting feedback
and change in self-adaptive systems is provided by Balasubramaniam[7].

8.7 Sum m ary

Current PSEEs built using machine-based paradigms have, to date, been inade
quate as support tools for software development processes. The resultant static
system is unable to cater for the inherently dynamic nature of the supported
process models.

The CSA approach does not negate the entire engineering approach but rather
augments it by suggesting that application needs should drive the underlying
architecture of the system. This is in sharp contrast to the current approach of
building the underlying architecture to be as generic as possible in order to cater
for all possible applications that will run on top of the architecture.

Each compliant layer of the systems architecture was constructed and tested
to be compliant at their own layer. The systems architecture was then created by

www.manaraa.com

CHAPTER 8. DISCUSSION AND FUTURE WORK 165

integrating all these layers and retested to see if the mechanisms provided by the
integrated application continue to be compliant to the policy needs of a process
model. Some examples of non-compliance were also outlined where an approach
to rectify them was described. This demonstrated a concrete example of how
a compliant system are able to provide flexibility by providing the ability to be
made compliant.

A sample process model was then specified to illustrate the two forms of
evolution in order to illustrate how well a system that has been built with the CSA
approach could cope with the evolution requirements of a PSEE. The designed
form of evolution has been well supported by current process languages. However,
the deviated form of evolution which requires changes to be made which were not
anticipated by the original assumptions, is not well supported.

www.manaraa.com

B ibliography

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques and Tools, Addison-Wesley, 1986.

[2] Robert Allen and David Garlan. A formal basis for architectural connection.
AC M Transactions on Software Engineering and Methodology, Vol 6, No.
3, July 1997, Pages 213-249, 1997.

[3] G.K. Ananthasuresh and S. Kota. Designing compliant mechanisms. Me
chanical Engineering, 117(11):93—96, 1985.

[4] Mike Anderson and Phil Griffiths. The nature of the software process mod
elling problem is evolving. In Proceedings of the Third European Workshop
on Software Process Technology, Villard de Lans, Volume 712 of Lecture
Notes in Computer Science, pages 31-34. Springer-Verlag, February 1994.

[5] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and
Henry M. Levy. Scheduler Activations: Effective Kernel Support for the
User-Level Management of Parallelism. AC M Transactions on Computer
Systems, 10(l):53-79, 1992.

[6] W. R. Ashby. A n introduction to cybernetics. Chapman, 1956.

[7] D Balasubramaniam, R Morrison, K Mickan, GNC Kirby, BC Warboys,
I Robertson, B Snowdon, RM Greenwood, and W Seet. Support for feed
back and change in self-adaptive systems. In AC M SIG SO F T Workshop on
Self-Managed Systems (W O SS’04), Newport Beach, CA, USA. ACM, 2004.

[8] K. Beck. Extreme Programming explained. Addison-Wesley, 1999.

[9] Stafford Beer. Designing Freedom. John Wiley and Sons, 1974.

166

www.manaraa.com

BIBLIOGRAPHY 167

[10] S Beyer, K Mayes, and B.C Warboys. Application-compliant networking
on embedded systems. 5th IEE International Workshop on Networked Ap
pliances, 2002.

11] Grady Booch, Object-Oriented Analysis and Design With Applications.
Addison-Wesley, 1994.

121 Grady Booch, Ivar Jacobson, and James Rumbaugh. The Unified Modelling
Language User Guide. Addison-Wesley, 1998.

131 Daniel P. Bovet and Marco Cesati. Understanding the Linux Kernel.
O’Reilly, 2003.

14] Frederick P. Jr. Brooks. The Mythical Man-Month : Essays on Software
Engineering. Addison-Wesley, 1995.

15] Manfred Broy. Toward a mathematical foundation of software engineering
methods. IE E Transactions on Software Engineering, 27(1), August 2001.

16] R.F. Bruynooghe, J.M. Parker, and J.S. Rowles. PSS: A System for Process
Enactment. In Proceedings of the First International Conference on the
Software Process: Manufacturing Complex Systems, California, USA, pages
128-141, October 1991.

17] Ethan Cerami. Web Services Essentials. O’Reilly, 2002.

18] Christelle Chaudet, R.M. Greenwood, Flavio Oquendo, and Brian War
boys. Architecture-driven software engineering: Specifying, generating and
evolving component-based software systems. IE E Proceedings: Software,
147:203-214, 2000.

[19] Reidar Conradi, Christer Fernstrom, Alfonso Fuggetta, and Robert Snow
don. Towards a Reference Framework for Process Concepts. Software Pro
cess Technology, 2nd European Workshop, E W S P T 1992, volume 635 in
Lecture Notes in Computer Science, 1992.

[20] Gianpaolo Cugola and Carlo Ghezzi. Software processes: a retrospective
and a path to the future. Sotware Process - Improvement and Practise, 4,
1998.

www.manaraa.com

BIBLIOGRAPHY 168

[21] B. Curtis, M. I. Kellner, and J. Over. Process Modelling. Communications
of the ACM, 35(9), 9 1992.

[22] Darren Dalcher. Feedback, Planning and Control-A Dynamic Relationship.
F E A ST 2000 International Workshop on Feedback and Evolution in Soft
ware and Business Processes, 2000.

[23] A.J.T. Davie and R. Morrison. Recursive Descent Compiling. Ellis Horwood
Limited, 1981.

[24] Tom DeMarco and P.J. Plauger. Structure Analysis and System Specifica
tion. Prentice Hall, 1985.

[25] Edsger W. Dikjstra. The Structure of the T.H.E Multiprogramming System.
Communications of the ACM , ll(5):341-346, May 1968.

[26] M. Dowson, B. Nejmeh, and W. Riddle. Fundamental Software Process
Concepts. Proceedings of the first European Workshop on Software Process
Modelling, 1991.

[27] P. H. Feiler and W. S. Humphrey. Software process development and enact
ment: Concepts and definitions. In Proceedings of the Second International
Conference on the Software Process, Berlin, Germany, pages 28-40, 1993.

[28] Alfonso Fuggetta. A Classification of CASE Technology. Computer,
26(12):25-38, December 1993.

[29] R. Mark Greenwood, Dharini Balasubramaniam, Sorana Cimpan, Gra
ham N.C. Kirby, Kath Mickan, Ron Morrison, Flavio Oquendo, Ian Robert
son, Wykeen Seet, Bob Snowdon, Brian C. Warboys, and Evangelos Zir-
intsis. Process Support for Evolving Active Architectures. In Flavio
Oquendo, editor, Proceedings of the Ninth European Workshop on Soft
ware Process Technology, Helsinki, Finland, Volume 2786 of Lecture Notes
in Computer Science, pages 112-127. Springer-Verlag, September 2003.

[30] R. Mark Greenwood, Dharini Balasubramaniam, Graham Kirby, Ken
Mayes, Ron Morrison, Aled Sage, Wykeen Seet, and Brian C. Warboys.
The Impact of Software-Architecture Compliance on System Evolution, to
appear in Madhavji(ed) Software Evolution, by Wiley, December 2004.

www.manaraa.com

BIBLIOGRAPHY 169

[31] R.M. Greenwood, Ian Robertson, and B.C. Warboys. A Support Frame
work for Dynamic Organizations. In Proceedings o f the Seventh European
Workshop on Software Process Technology, Kaprun, Austria, Volume 1780
of Lecture Notes in Computer Science, pages 6-20, February 2000.

[32] C. A. R. Hoare. Communicating sequential processes. Prentice-Hall Inter
national, 1985.

[33] IEEE. (ISO /IEC) [IE E E /A N SI Std 1003.1, 1996 Edition] Information
Technology - Portable Operating System Interface (PO SIX) - Part 1: Sys
tem Application: Program Interface (API) [C Language]. IEEE, 1996.

[34] D. C. Ince. An introduction to discrete mathematics,formal system specifi
cation and Z. Oxford University Press, 1992.

[35] C.B. Jones. Systematic Software Development using VDM. Prentice Hall,
1990.

[36] Brian Kernighan. The C Programming Language. Addison-Wesley, 1994.

[37] Kazuhiro Kosuge and Masayuki Shimizu. Planar parts-mating using struc
ture compliance. In Proceedings of the 2001 IE E E /R S J International Con
ference on Intelligent Robots and Systems, 2001.

[38] Philippe Kruchten. The Rational Unified Process. Addison-Wesley, 1999.

[39] M. M. Lehman. Process Models, Process Programs, Programming Support.
In Proceedings of the Ninth International Conference of Software Engineer
ing, pages 14-16, 1987.

[40] M. M. Lehman and L.A. Belady. Program Evolution: Processes of Soft
ware Change in AP IC Studies in Data Processing No. 27. Academic Press
Inc.(London) Ltd, 1985.

[41] M.M. Lehman, D.E Perry, and W. M. Turski. Why is it so hard to find
Feedback Control in Software Processes?(Invited Presentation). In Pro
ceedings of the 19th Australasian Computer Science Conference, February
1996.

www.manaraa.com

BIBLIOGRAPHY 170

[42] M.M. Lehman and Juan F, Ramil. Rules and tools for software evolution
planning and management. Annals of Software Engineering, 11 (1):15—44,
2001 .

[43] Tim Lindholm and Frank Yellin. The Java(TM) Language Specification,
Second Edition. Addison-Wesley, 1999.

[44] David C. Luckham, James Vera, and Sigurd Meldal. Key Concepts in A r
chitecture Definition Language, pages 23-45. Cambridge University Press,
2000 .

[45] Nazim H. Madhavji. The process cycle. Software Engineering Journal, 6(5),
September 1991.

[46] Matthew Mason. Compliance and force control for computer-controlled
manipulators. IEEE Trans on Systems, Man, and Cybernetics, 11 (6) :41S—
432, 1981.

[47] K. R. Mayes and J. Bridgland. Arena: a run-time operating system for
parallel applications. In Proceedings of 5th EuroMicro Workshop on Parallel
and Distributed Processing (PD P’97), 1997.

[48] K.R. Mayes. Trends in operating systems towards dynamic user-level policy
provision. Technical report, Department of Computer Science, University
of Manchester, 1993.

[49] Marshall K. McKusick, Keith Bostic Michael J. Karels, and John S. Quater-
man. The Design and Implementation of the 4-4 BSD Operating System.
Addison Wesley, 1996.

[50] Nenad Medvidovic and Richard N. Taylor. A classification and comparison
framework for software architecture description languages. IE E Transac
tions on Software Engineering, 26(1), January 2000.

[51] Sun Microsystems. Handling Errors with Java Exceptions.
http://java.sun.com/doc/books/tutorial/essential/exceptions, 2003.

[52] Sun Microsystems. Java Technologies, http://java.sun.com/products, 2003.

[53] Robin Milner. Elements of interaction. Communications of the ACM,
36(1):89—89, 1993.

http://java.sun.com/doc/books/tutorial/essential/exceptions
http://java.sun.com/products

www.manaraa.com

BIBLIOGRAPHY 171

[54] Robin Milner. Communicating and Mobile Systems: the w-calculus. Cam
bridge University Press, 1999.

[55] R Morrison, D Balasubramaniam, M Greenwood, GNC Kirby, Mayes K,
Munro DS, and BC Warboys. Processbase abstract machine manual (ver
sion 2.0.6). Technical report, Universities of St Andrews and Manchester,
1999.

[56] R Morrison, D Balasubramaniam, M Greenwood, GNC Kirby, K Mayes,
DS Munro, and BC Warboys. Processbase reference manual (version 1.0.6).
Technical report, Universities of St Andrews and Manchester, 1999.

[57] R. Morrison, D. Balasubramaniam, R.M. Greenwood, G.N.C Kirby,
K. Mayes, D.S Munro, and B. Warboys. An approach to compliance in
software architectures. IEE Computing and Control Engineering Journal,
Special Issue on Informatics, ll(4):195-200, 2000.

[58] R Morrison, D Balasubramaniam, RM Greenwood, GNC Kirby, K Mayes,
DS Munro, and BC Warboys. A compliant persistent architecture. Soft
ware - Practice and Experience, Special Issue on Persistent Object Systems,
30(4):363-386, 2000.

[59] Ron Morrison, Graham Kirby, Dharini Subramaniam, Flavio Oquendo, So-
rana Cimpan, Brian Warboys, Bob Snowdon, and Mark Greenwood. Sup
port for Evolving Software Architectures in the Arch Ware ADL. In Fourth
Working IE E E /IF IP Conference on Software Architecture^ WICSA ’Of) 1
pages 69-78. IEEE Computer Society, June 2004.

[60] P. Naur and B. Randell. Software engineering: Report on a conference
sponsored by the nato science committee. 1969.

[61] Flavio Oquendo, Brian Warboys, Ron Morrison, Regis Dindeleux, Ferdi-
nando Gallo, Hubert Garavel, and Carmen Occhipinti. Arch Ware: Archi
tecting Evolvable Software. In Proceedings of the First European Worshop,
EW SA, pages 257-271, 2004.

[62] L. J. Osterweil. Software Processes are Software Too. In Proceedings of the
Ninth International Conference of Software Engineering, pages 2-13, 1987.

www.manaraa.com

BIBLIOGRAPHY 172

[63] L. J. Osterweil. Software Process are software too, revisited: an invited
talk on the most influential paper of ICSE 9. Proceedings of the 1997
International Conference on Software Engineering, pages 540-548, 1997.

[64] Martyn A. Ould. Business Processes. John Wiley and Sons, 1995.

[65] D. L. Parnas. On the Criteria to be Used in Decomposing a System into
Modules. Communications of the ACM , 15(12):1053-~1058, 1972.

[66] D. L. Parnas. On a ’’Buzzword” : Hierarchical Structure. IFIP Congress,
1974.

[67] D. L. Parnas. On the Design and Development of Program Families. IEEE
Transactions on Software Engineering SE-2,1 (1976): pages 1-9, 1976.

[68] David L. Parnas. Predicate Logic for Software Engineering. IEEE Trans
actions on Software Engineering, 19(9):856-862, September 1993.

[69] David L. Parnas and D.L. Siewiorek. Use of the Concept of Transparency
in the Design of Hierachically Structured Systems. Communications of the
AC M , 18(7):401-408, September 1975.

[70] D.E. Perry and G.E. Kaiser. Models of software development environments.
IE E Transactions on Software Engineering, 17(3), March 1991.

[71] B. C. Pierce and D.N. Turner. Piet: a programming language based on the
pi-calculus. Indiana University CSCI Technical Report 4^6, March 1998,
1998.

[72] Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thompson,
Howard Tickey, and Phil Winterbottom. Plan 9 from bell labs. Computer
Systems, 8(3), 1995.

[73] Gerald J. Popek and Robert P. Goldberg. Formal Requirements for Vir-
tualizable Third Generation Architectures. Communications of the ACM,
17(7% 7 1974.

[74] Dennis M. Ritchie. The Limbo Programming Language.
http://www.vitanuova.com/inferno/papers/limbo.html, 2000.

http://www.vitanuova.com/inferno/papers/limbo.html

www.manaraa.com

BIBLIOGRAPHY 173

[75] Ian Robertson. An implementable meta-process. In Proceedings of Second
World Conference on Integrated Design and Process Technology, 1996.

[76] Ian Robertson. An evolutionary approach to process engineering. In Pro
ceedings of 1st International Workshop on the Many Facets of Process En
gineering^ pages 159-163, 1997.

[77] Stuart Seehrest. An introductory 4.4bsd interprocess communication tuto
rial. Technical report, Computer Science Research Group, Computer Sci
ence Dvivion, Department of Electrical Engineering and Computer Science,
University of California, Berkeley, 1993.

[78] Wykeen Seet. An evaluation of a generic software process framework. MPhil
Thesis, The University of Manchester, 2000.

[79] Wykeen Seet, Ian Robertson, and Brian Warboys. Enactable evolution in
the software development process. F E A ST 2000 International Workshop
on Feedback and Evolution in Software and Business Processes, 2000.

[80] Wykeen Seet and Brian Warboys. A Compliant Environment for Enacting
Evolvable Process Models. In Proceedings of the Ninth European Workshop
on Software Process Technology, Helsinki, Finland, Volume 2786 of Lecture
Notes in Computer Science, pages 154-163. Springer-Verlag, September
2003.

[81] Mary Shaw and Paul Clements. A Field Guide to Boxology: Preliminary
Classification of Architectural Styles for Software Systems. In Proceedings
of the 21st International Computer Software and Applications Conference,
pages 6-13, August 1997.

[82] Mary Shaw and David Garlan. Formulations and Formalisms in Software
Architecture, volume 1000 of Lecture Notes in Computer Science, pages
307-323. Springer-Verlag, 1995.

[83] Mary Shaw and David Garlan. Software Architecture: Perspectives on an
emerging discipline. Prentice Hall, 1996.

[84] R. A. Snowdon. Active Models and Process Support. In Proceedings of the

www.manaraa.com

BIBLIOGRAPHY 174

Fifth European Workshop on Software Process Technology, Kaprun, Aus
tria, Volume 1149 of Lecture Notes in Computer Science, pages 93-98,
October 1996.

[85] R.A. Snowdon. An Introduction to the IPSE 2.5 Project. ICL Technical
Journal 6(3)@ 467-478, 1989.-

[86] Ian Sommerville and Simon Monk. Supporting informality in the software
process. In Proceedings of the Third European Workshop on Software Pro
cess Technology, Villard de Lans, France, Volume 772 of Lecture Notes in
Computer Science. Springer-Verlag, February 1994.

[87] Ian Sommerville and Tom Rodden. Understanding the software process
as a social process. In Proceedings of the Second European Workshop on
Software Process Technology, Trondheim, Norway, Volume 685 of Lecture
Notes in Computer Science. Springer-Verlag, September 1992.

[88] Richard Stevens. Unix Network Programming. Prentice Hall, 1998.

[89] S. M. Jr. Sutton, D. Heimbigner, and L. J. Osterweil. Language Constructs
for Managing Change in Process-Centred Environments. In Proceedings
of the Fourth AC M SIG SO F T /SIG P L A N Symposium: Practical Software
Development Environments, pages 206-207. ACM Press, 1990.

[90] S. M. Jr. Sutton, B. S. Lerner, and L. J. Osterweil. Experience Using the
JIL Process Programming Language to Specify Design Processes. Techni
cal Report UM-CS-1997-068, Computer Science Department, University of
Massachusetts, , 1997.

[91] S. M. Jr. Sutton and L. J. Osterweil. The Design of a Next-Generation
Process Language. In M. Jazayeri and H. Schauer, editors, Proceedings of
the Sixth European Software Engineering Conference (E SE C /FSE 97, Vol
ume 1301 of Lecture Notes in Computer Science), pages 142-158. Springer-
Verlag, 1997.

[92] Clemens Szyperslci. Component Software and the Way Ahead, pages 1-20.
Cambridge University Press, 2000.

[93] B. C. Warboys, D. Balasubramaniam, R.M. Greenwood, G. N. C. Kirby,
K. Mayes, R. Morrison, and D. Munro. Instances and connectors: Issues for

www.manaraa.com

BIBLIOGRAPHY 175

a second generation process language. In Proceedings of the sixth European
Workshop on Software Process Technology, Weybridge, UK, Volume lf.87 of
Lecture Notes in Computer Science, pages 137-142. Springer-Verlag, 1998.

[94] B.C. Warboys. The IPSE 2.5 Project: A Process Model Based Architecture,
pages 313-331. Ellis Horwood Limited, 1989.

[95] B.C. Warboys. The IPSE 2.5 Project: Process Modelling as the Basis for
a Support Environment. Proceedings of the First International Conference
on System Development Environments and Factories, pages 59-74, 1989.

[96] BC Warboys, D Balasubramaniam, RM Greenwood, GNC Kirby, K Mayes,
R Morrison, and DS Munro. Collaboration and composition: Issues for
a second generation process language. In O. Nierstrasz and M. Lemoine,
editors, Proceedings of the Seventh European Software Engineering Confer
ence, Toulouse, France, Volume 1687 of Lecture Notes in Computer Science,
pages 75-91. Springer-Verlag, September 1999.

[97] Brian Warboys. The Practical Application of Process Modelling - some
early reflections. In Proceedings of the first European Workshop on Software
Process Modelling, Milan 1991, 1991.

[98] Brian Warboys. The software paradigm. ICL Technical Journal, 10(1), May
1995.

[99] Brian Warboys, Peter Kawalek, Ian Robertson, and Mark Greenwood. Busi
ness Information Systems: A Process Approach. McGraw-Hill International
(UK) Limited, 1999.

[100] Anthony I. Wasserman. Toward a discipline of software engineering. IEE
Software, 13(6):23—31, November 1996.

[101] Lancelot Law Whyte. Structural Hierarchies: A Challenging Class of Physi
cal and Biological Problems. In Hierarchical Structures, pages 3-16, Novem
ber 1968.

[102] J. B. Wordworth. Software Engineering with B. Addison-Wesley, 1996.

[103] Benjamin Yeomans. Enhancing the world-wide-web, third year project re
port. Technical report, Department of Computer Science, University of
Manchester, 1996.

www.manaraa.com

BIBLIOGRAPHY 176

[104] Edward Yourdon. Modern Structured Analysis. Yourdon Press Computing
Series. Prentice-Hall International, 1989.

[105] E Zirintsis. Towards Simplification of the Software Development Process:
The Hyper-Code Abstraction. Phd, University of St Andrews, 2000.

[106] E Zirintsis, GNC Kirby, and R Morrison. Hyper-code revisited: Unifying
program source, executable and data. In 9th International Workshop on
Persistent Object Systems, Lillehammer, Norway, 2000.

www.manaraa.com

A ppendix A

Enact able tt-SPA C E

A .l Introduction

The Enactable 7T-SPACE language is a derivation of the the original w-SPACE.
Enactable w-SPACE is designed to be enactable on the wPVM. The following
sections details the Reserved Words, The Grammar in BNF and Code Generation
Rules of the Enactable w-SPACE language.

A .2 R eserved W ords

The following are the reserve words of the Enactable w-SPACE language.

a tta ch behaviour component connector d e f in e

decompose in inout recompose rep la ce
new op era tion out port type
whenever where

177

www.manaraa.com

APPENDIX A. ENACTABLE n-SPACE 178

A. 3 Grammar in EBNF

Format
1. temmals™ terminals
2. <non-terminals> - non-terminals
3. code_gen - Basic code generation operations

1. Tt-space program

1.1 <7t-space architecture>
1.2 <list of declarations> ::

1.3 <type declaration> ::=
1.4 <declaration>

[clist of declarations>] <architecture>
<type declaration>[<annotation>][; ctype
declaration>[cannotation>j]*
dtefm© <declaration>
<port type declaration> | <operation type
declaration>
| <behaviour type declaration>|
<component type declaration>|
<connector type declaration>|
<composite type declaration>

2. Port Type declaration

2.1 <port type declaration>::=

2.2 <Hst of typed parcimeters>\

2.3 <typedparameter>:: =

2.4 <port specificcition>::=

2.5 <portsignature>::~

2.6 <list of parameter names>:

2.7 <portprotocol>\\—

2.8 <port actions>::=

2.9 <send channel>\:=

<port type name> [clist of typed
parameters>]
{ [clist of typed_parameter> ,]cport
specification> }

ctyped parameter>[» ctyped parameter>]*

cparameter name>:cparameter type name>

cport signature> = cport protocol>

cport type name> [clist of parameter names>]

cparameter name> [9 cparameter name>] *

cport actions> [cpi-calculus operator> cport
actions>]*

csend channel> | creceive channel> | cport
signature> | cprimitive process>

cchannel name>_< [clist of parameter names>]
>

2.10 c receive channel>::= cchannel name> ([clist of parameter names>]

www.manaraa.com

APPENDIX A. ENACTABLE n-SPACE 179

2.11 <pi-calculus operator>\\-

2.12 <primitiveprocess> ::=

o - f

3. Operation Type declaration

3.1 <operation type declaration> coperation type name>
[clist of operation type parameter>]
cProcessBase code> }

3.2 <list of operation type parameter> coperation type parameter>
coperation type parameter>] *

3.3 c operation type parameter> ::=

4. Behaviour Type declaration

4.1 c components behaviour type declarations.:-

m [clist of typed parameter>]
| oust [clist of typed parameter>]
[mowi [clist of typed parameter>

ccomponent
behaviour type name>
[clist of typed ports>]
[cvariable„declarations>5]*
{ ccomponent_behaviour_specification>

4.2 Cconnectors behaviour type declaration>::=
cconnector behaviour

type name>
[clist of typed ports>

[clist_of_typed_parameter>?]
cconnectors behaviour specification>

4.3 C list of typed ports>::= cport name> : cdescription of typed port>
[5cport name> : cdescription of typed port>]*

4.4 cdescription of typed port> cport type name> [clist of typed parameters>]

4.5 cvariable declarations> ctyped_parameter> | coperation„decl>

4.5 <operation_behaviour_decl> coperation_name>[[clist of operation type
parameter>]]
{ cProcessBase code> }

4.6 c components behaviour specification>:\~
cbehaviour signature> =

ccomponent behaviour protocol>

www.manaraa.com

APPENDIX A. ENACTABLE ti-SPACE

4.7 <connectors behaviour specification>:\=
cbehaviour signature> =

Cconnector behaviour protocol>

4.8 <behaviour signature>::= cbehaviour type name> [clist of port names>

4.9 c list of port names>\:~ cport name> [„ cport names>]*

4.10 c component behaviour protocol>::= ccomponent behaviour actions>
[cpi-calculus operator>

ccomponent behaviour actions>]*

4.11 c connector behaviourprotocol>::= cconnector behaviour actions>
[cpi-calculus operator>

cconnector behaviour actions>]*

4.12 c component behaviour actions>::= coperation >
[cbehaviour signature>
| ccommunication>
| cprimitive process>

4.13 c connector behaviour a c tio n s> \cbehaviour signature>
| ccommunication>
| cprimitive process>

4.14 <operation>: := coperation name>
[[clist of parameter names>]]

4.15 <communication>:\= cport name>@cchannel>

4.16 <channel>::= csend channel> I creceive channel>

5. Component Type Declaration

5.1 c component type declaration^.:= ©ompoMit typ© ccomponent type name> [clist
of typed ports>]
{ cport_behaviour_decl> [||
cport_behaviour_decl>]* }

5.2 <port_behaviour_declaration>\\=<poi'i declaration> | cbehaviour declaration>

5.3 cport declaration>::= port cport name> : cport type name>
[clist of parameter names>]

5.4 c behaviour declaration^. := IbehavDoiuir cbehaviour name> : ccomponent
behaviour type name>
[clist_of_typed_parameters>]

www.manaraa.com

APPENDIX A. ENACTABLE n-SPACE

6, Connector Type Declaration

6.1 <connector type declaration>::= cconnector type name>
[clist of typed ports >]
(cport_behaviourjiecI> ([|
cport_behaviour_decl>)* }

7. Composition Type Declaration (Includes the Evolution composition)

ccomposite>7.1 <architecture>

7.2 <composite type declaration> ::= composite type ccomposite type name>
[clist of typed architectural elements> ■
ccore declaration>

7.3 c list of typed architectural elements> ::= ctyped_parameter >
[, ctyped_parameter >]*

7.4 <composite> ::=

7.5 <core declaration>

ccomposite name> ccore declaration>

[cmodel operation declarations>]
[where cwhere declarations>]
[whenever cwhenever declarations>]

7.6 Cmodel operation declarations> ::=cmodel operation declaration>
(|| cmodel operation declaration>)

7.7 c model operation declaration> ::= cdecompose operation> |
carchitecture element declaration>

7.8 Cdecompose operation>::= ccomposite name>

7.9 c architectural element declaration>\\" ctyped_parameter>
[[clist of renaming ports>]]
[|| ctyped_parameter>
[[clist of renaming ports>]]
i *

7.10 <list of renaming ports>

7.11 c renamingport> ::=

7.12 Crenaming port name> ::=

7.13 <list of renaming channels>

crenaming port> [, crenaming port>]*

crenaming port name>
[{ clist of renaming channels> }]

cport name> [/ cnew port name>]

:= crenaming channel> [, crenaming channel>]*

www.manaraa.com

APPENDIX A. ENACTABLE 71-SPACE 182

7.14 <renaming channel> ::=

7.15 <where declcirations> ::=

7.16 <where declaration>::=

cchannel name> / <new channel name>

cwhere declaration> [, where declaration]*

creplace declaration>
| cattachment declaration>
| crecompose declaration>
| ccomposite declaration>
cnew decl>

7.17 Ccomposite declarations>

7.18 c architectural elements>\\=

7.19 c architectural element>::=

7.20 c replace declaration>

7.21 c attach declaration> ::=

7.22 c component channel> ::=

7.23 c connector channel>

7.24 c recompose declaration>

7.25 c list of component name s>

7.26 c list of operation declarations>

7.27 c branch declarations> ::=

7.28 c new declarations>::=

7.29 c new instance>

7.30 Cnew instance operation>::=

7.31 c new operation> ::=

ccomposite type name>
[carchitectural elements>]
[, ccomposite type name > [

carchitectural elements>]]*

carchitectural element>
[3 c architectural element>]*

ccomponent name> | cconnector name>]

ccomponent name> by
cnew component name>

ccomponent channel> to
cconnector channel>

ccomponent name>@cport name>
[@cchannel name>]

c connector name>@cport name>
[@cchannel name>]

lesompose (clist of component names>)

ccomponent name> [, ccomponent name>]*

::= cbranch declarations>
[; cbranch declarations>]*

cnew declarations> [„ cnew declarations>]

b ©w cnew instance> => cnew instance
operation>

ccomponent instance name> | ccomponent
channel name>

cnew operation>| cattach operation>

cnew instance>

www.manaraa.com

APPENDIX A. ENACTABLE tt-SPACE

8. Annotation

8.1 <annotation>

8.2 <value_declaration> ::=

8.4 <ann_expression> ::=

8.5 <object_constructor>

8.6 <parameter assignment> w

8.7 <add_op> ::=

8.8 <mult_op> ::=

8.9 <int_mult_op>

8.10 <string_mult_op>

8.11 <ann_Uteral> ::=

8.12 <stringjiiteral> ::=

8.13 <int_Uteral> ::=

8.14 <char> ::=

8.15 <digit> ::=

<%p§cvalue declaration> [; cvalue
declaration>] *%p§>

let <identifier> <- <ann_expression>

<ann_expression> <add„op> <ann„expression> |
<ann_expression> <mult_op> <ann„expression>

cobject constructor>|
<ann_expression> <deref_op> <ann_identifier>|
<ann_literal>

<identifier>([cparameter assignment>])

cidentifier> C= cann_expression>[5cidentifier>
<= cann_expression>] *

cint_mult_op> | cstring_mult_op>

* | div

++

cstring_literal>|cint_literal>

« [char] *«

digit[digit]*

any ASCII character

(0) 11 12 13 | 4 | 5 | (5 | 7 | 8 | 9

www.manaraa.com

APPENDIX A. ENACTABLE n-SPACE

A. 4 Code Generation Rules

184

Format
1. identifier - Tt-SPACE syntactic constructs that are relevant for code generation
2. 7T=SPACE - 7T-SPACE syntactic construct that are not relevant for code generation
3. ProcessBase - Generated P rocessB ase text code
4. cod e_gen - B asic cod e generation operations

Code Generation Operations
1. type_string(«/) - returns the type name o f the id
2. for each idj do expression end for - loop s through the set o f id and u ses the sp ecific id indexed by

i in the expression
3. i f boolean then expressionj e lse expression - i f boolean is true then expression] is executed else

expression

1 .7t-space program
Tt-SPACE ProcessBase
list o f declarations
architecture

include safeOpLib ioLib ps_utilities psjsom
list_of_declarations
architecture

2. Port Type declaration

Tt-SPACE ProcessBase
define port type name
\channel_idpc_type j,..,

channel id n:c type,,]
<
port specification
>

type name is vkw[typeTag:int;
channel_idi: c _ t y p e j \channel_fdn\c_type.
port_spec: string]

S name Generator
le tgea_name_Fotl< fen(
channel id \ ; c typei\.. ^channel id„:c type„)->name
{
view(typeTag < portTag,

channeled] <= c_typeI}. . ,channeled„<~c_typen, ! names are
maintained

port spec <= port specification)

>

3. Operation Type declaration
Tt-SPACE ProcessBase
defim© operation type name
[in|f'ci(7 t n ,..,id in. 1
out\id2p t2 j,..,id0j:t2 „],
moutl/dJ/: t3],..,id3 n:t3 J }
{ ProcessBasejcode }

! in[..], out[...]» intout[...] might not appear in
! order and are optional

type name is view[typeTag:mt;
i d j . t j tid„. t ,t>
id2pM clt2 /] ;id2 „:l©c[[/2 „J;
id3p loc[t3 /J ;..;id3 !©e[f3„]j;
operation fun: fun()

1

! Code generation for name
let gen_name_Operation<= fin(

idj j , t j] . ,idn: t ,lt
f42/:loc[t2 J ;id2 „:l©c]>2 „];
id3p loc|[t3 ;1 -,..’}id3 n: locfll.3

www.manaraa.com

APPENDIX A. ENACTABLE n-SPACE

) => name
t{

let namejoperationJEnn <= fcn()
f

ProcessBase code
}
view(typeTag<=0 perationTag;

idj <= i d j , i d„<~ idn,
id2]<-id2 / ,id2 „<= id2 „ ,
id3]<■=• id3j r .,id3„<~id3
operationJftrn <■= «ame_operatHon_liun

)
>

4. Behaviour Type declaration
4.1 behaviour type declaration and generator
Tt-SPACE ProcessBase
behaviour component type name
Ip o r tjd i : p_typeh .. ,port f i d n'.p_type „J
{
i d j : t !,.,,idn: t n, ! id declarations
opi l p tl{pbase,},.,opn\p^{pbasen} lop decls

nam e\portfid /,..,port f i d „]=
components behaviour specification
>

type name is view
[typeTag :in t;
port f i d) : p_typep.. ;port_id n:p_type
behaviourjEim: locpmQ] 5
behaviour_spec: string]

! Instance Generator
let gen_nameJBehaviour <“fun(
portfid i : p_ t y p e i ; p o r t f i d „:p_ type „
) => name
{

! Generate optionaljoperations
for each opj
let opt <- fon(p,-) ! parameters p
{ phase-, }
end for

! Generate behaviourjlimctioes
let name behaviour &n<=fcn()
{
for each idi

let idi<= k c(i f type_string(t f) ==string « « e lse 0)
end if

component behaviour specification
>

view(
typeTag <= behaviourTag,
portfid i <= portfid i»
• * *>
port fid,, <= portfid,,,
behaviourjEim <= loc(nam^JbehavioiiMjEun),
behaviour spec <- behaviour spec

)
>. .

www.manaraa.com

APPENDIX A. ENACTABLE 7Z-SPACE 186

4.2 behaviour pi-caiculus code generation

4.2.1 sequence(.)pi_operator

Tt-SPACE ProcessBase
pi_expressioni. pi_cxpression2-...pi_expression,m pi_expressiotij

pLexpressio>i2

pi_expressionn

4.2.2 conditional (+) pi_operator

Tt-SPACE ProcessBase
Pi_expression}+pi_expressioti2 • ■ .+pi_expression„ if checkReceiveChaimeI(first_exp(p/_e'J(p /))

them
pi_expression/

else if
checkReceiveChamiel{first_exp(p/_ejcpre^io/i2))
them
pLexpression2

else if
checkRecdveChaiffliel(first_.exp(px_exprcw/on„))
them

pi_expression„
else
{ ! do motMmg }
! where first_exp, gets the first channel exp in the
! pi„expression, codegen assumes that condition is
! based on channels, but can be extended

4.2.3 parallel (||) pi_operator

Tt-SPACE ProcessBase
PCexpressionj\]pi_expression.2 -• .||pi_expression„ let threadjist <HnLewThre£d(fiiro,Q {p i_exp ress ion;),

mil(ThreadlList)
threadjlist ^ewThJreadCfoBOfpL^prcM/o/^ljttiireadjESt}

threadjlist :^ewThread(fcm0{pLexpressfon,,},threadJ!ist}
wait thread termmatiom(thread list)

4.3 pi„expressions code generation

4.3.1 send_channel expression

Tt-SPACE ProcessBase
channel<identifier> if type_string(channel) = channeLstring

semdStrimgTo(c/iawie/, ’identified
else if type_string(channel) = channel_int

svwMiAToichannel, *identifier)

www.manaraa.com

APPENDIX A. ENACTABLE n-SPACE

4.3.2 receive_channel expression
71-SPACE ProcessBase
channel{identifier) i f type_string(channel) = channel_string

tQQeb/eBtmg^mm(channel,identifier)
e lse i f type_string(channel) = channel_int

receiveIntFrom(c/zawi<?/, identifier)
4.3.2 operation expression
JI-SPACE ProcessBase
o p e r a t i o n l p a r a m p a r a m , ^ o p era tio n ip a ra m . . .»param „)

5. Component Type Declaration

it-SPACE ProcessBase
define component type name
Ip o rtJd j: pJype1,..,port_idn:p_typen]
{
portp o r tjd] : pjypej,.., ||
port ...||
port port_id „:pjype „ ||
bshmrbw behaviourJdj: bjtype} ||
behaviour... ||
behaviour behaviour id, , : b type„
}

type name is viewf
typeTag : in t;
p o rljd j : p_ type];port_ id„\p_ type „;
behaviour_id] : b_ type];.. ;behaviour_idn\b_ type,,;
start behaviour : loc[fun()]
J

! Instance Generator
let gen_name_C©mponent < ■ fiim(
p o r t jd] : p_ type];port_id„:p_ type,,;
behaviourJd/ : b_ type];behaviour_id„:b_ typen
) -> name
<
let name start behaviour <= fiinQ
{

‘ (behaviou r j d i .behaviourJEun)0
... .behaviourJEun)()

%behaviour id,,, behaviour fim)Q
}

view(
typeTag < componentTag,
port_idj <= portjd],.. p o r t j d n <- port_ id,,;
behaviour Jd] <■ behaviour„ id],.. ,
behaviourJd„ <= behaviour_ id,,,
start behaviour <■= loa{name start behaviour)

)
J

www.manaraa.com

APPENDIX A. ENACTABLE n-SPACE

6. Connector Type Declaration
Tt-SPACE ProcessBase
define connector type name
\port id j: pjtypei,..,portjd „:p type,,]
{
port p o r tjd] ; pjype],.,, ||
port ...||
port port J d p jy p e „ ||
behaviour behaviour name/ : behaviour type]

1
1

behaviour... ||
behaviour behaviour name, , : behaviour type,,
>

type name is view
[typeTag : in t ;
p o r tjd] : p_ type] ;.. ;portJd„:p_ type
behaviour J d] : b_ type / . ;behaviourJd„:b_ type „;
start behaviour : locpmO]
]

! Instance Generator
let gen_name_C©Hiponent<= fim(
p o r tjd] : p_ ty p e] ; p o r tJ d n:p_ type,,;
behaviour J d] : b_ typ e];b eh a v io u rJd „:b_ type, , ;
start_behaviour: locpanQ]
) => name

let name start behaviour <= fim()
{

\beha v/oM/-_iW/,behavioOT_fim)0
... .behaviourJlun)0

’‘(behaviour id,,: behaviour fcm)()
>

view(
typeTag <■ connectorTag,
portjd] <= p o r t j d] p o r t j d , , <= port_ idn>
behaviour J d] <= behaviour_ id],.. ,
behaviourJd„ <= behaviour_ id
start behaviour <= loc(name start behaviour)

)
>

www.manaraa.com

APPENDIX A. ENACTABLE n-SPACE

7. Composition Type Declaration
7.1 Composite type declaration and generator

tt-SPACE ProcessBase
define composite type composite_name
| id] . tj,...,id n. t nJ
compose name
{
decompose composite
[where where declarations]
[whenever whenever declarations]

))

Type name is view
[typeTag :int;

i d i : t

id,,. tn,
wherejfain: loc[fiin()];
whenever_fiin: locpumQ];
start behaviour: locpmQJ
1
! Instance Generator
let gen_/ia/»e_Composite<= fum(
id] : t]i
" '9
idn • hi
) => name
{
! where declarations
let name where fiin<“ fim()
{

where declarations
>
where_fon()! execu tes the w here function

! w henever declarations
let name whenever fun<=funQ
{
whenever declarations

>
let name start behaviour <= ffumO
{
let thread_list <•■

newThread(fun(){ X̂ startjbehaviourX)), nil(ThreadList)
thread_list :^ewThread(fun(){ \ i d 2.\start_behaviour)(),

threadjlist)

thread_list :^ewThread(fimQ{Xi,4i-start_behaviour)0)s
thread_list}

wait thread termination(thread list)
>
view(

typeTag <■= compositeTag,
id] <“ id]i
. . . ,
idn <= idn\
where_fun <= loe(/ja/ne_where_fun);
whenever_fon <= loc(nfl»te_where_fun);
start behaviour < loc(name start behaviour)

)
>

www.manaraa.com

APPENDIX A. ENACTABLE n-SPACE

7.2 Architecture Compose operation
71-SPACE ProcessBase
compose name
{ i d ! : f/||
. ,.||/Y/(l: t „
decompose composite
[where where declarations]
[whenever whenever declarations]
>

let name<- fum(
idi : t j)
. . . ?
idn , tn
) => view[typeTag tint;

i d i : t &
* •
id, , . bi >
wherefim: locpm O l1
whenever_fim: loc[fun()l;
start behaviour: locpumQ]

1
{

! where declarations
let name where fun <= fim()
<
where declarations

>
»a/??ejWhere_fun() ! executes the where function

! whenever declarations
! whenever declarations
Set name whenever fan < fun()
{
whenever declarations

}

let name start behaviour <- firnQ
{
let thread_Mst <=

ewThread(fim0 {4 (id}. start_behaviour)Q }, mil(ThreadList)
tlhireadjlist :=newThread(fanO{‘(/^2 -startJbehaviour)(),

thread_list}

threadjlist :^ewTTkead(fim(){‘(redstartJbehaviour)0},
thread_list}

wait thread termimation(thread list)
}

! Start the model
name, startJbehaviourQ

view(
typeTag <= compositeTag,
id; <= id i;
...»
id,, id,,,
wherejfum <= loc(/zame_where_fim);
whenever_fum <■ loc(na/«e_whemever_fun);
start behaviour <= loc(name start behaviour)

)
>

www.manaraa.com

APPENDIX A. ENACTABLE n-SPACE

7.3 where declarations
tt-SPACE ProcessBase
attach channel_a t o channel_b

replace component_a by component_c

recompose {component/, com pom ntj»
...fComponent,,)

attecfoChamel(amy(c/ia/ine/_a), m y{channel_b))

repkceCompomemt(way(componenf_a)s
m y{componentJb))

let componentList <= addC©mponent(ray(c0 mp£wen//)
,componentList)
componentList := addComponentifsinyifcowi/w/jenr?)
,componentList)

componentListaddComponent(any(componenr,,)
jComponentList)

recomposeCompositefcomponentList)

7.4 whenever declarations
Tt-SPACE ProcessBase
whenever whenever_declarations
mew component ~> mew new_component
new component => attach channel_a to
channeljb

! Still working on possible code generation strategies

8. Annotation
8.1 annotation expression body
tt-SPACE ProcessBase
<%ps
let id'i <= ann_expressioni

let idn <= ann_expression„
%ps>

let idi <" ann_expressioni

let id,, <= ann_expression„
! No changes except the different ann„expression
specified
! later

8.2 annotation expression
tt-SPACE ProcessBase
ann_expression 1 anm_ expression! No conversion, follow PBase 1

| expressions |
8.3 annotation component instance construction

tt-SPACE ProcessBase
identifieriparcimi <- d [, ..,param„<~ idn) | gmJdentiJierJ.ype_stY'mg(identifter){idh id,,)

www.manaraa.com

APPENDIX A. ENACTABLE tt-SPACE

8.4 channel type instance construction
tt-SPACE ProcessBase
{identifier} {

let x <~ my{identifier)
project x into X

string: gm_Ghmn@l_stsmg(identifier);
t a t : gen_chame!_tat({'rfe/zrryta/*);
default: gen channel strimgf6”)

>

9. Channel Type Declaration
tt-SPACE ProcessBase
[typejd} if type_string(fy/je_/dj = « string »

chammel_strtag
else if type_string(type_id) = « int »

charnel tat

www.manaraa.com

A p p en d ix B

T he Tower M odel

The basic Towers framework was specified in the 7T-SPACE language in order to verify
its feasibility. This work was done mainly in collaboration with the Informatics Process
Group at the University of Manchester where the model has an enactable model on
Process Web. This section shows the core classes that are relevant to construct a Tower
Node.

B .l Towers in 7T-SPACE

B .2 H D ev N ode C om ponent
The HDev node is just a basic shell that will be bound with specific methods. The core
components of Specification and Product are included in this component.

!COMPONENTS

INODE COMPONENT
define component type HdevNode[node-parent:

B iD iP o rt(in ch a n :[S p ec ifica tio n], o u tc h a n :[S p e c if ic a tio n]] ,
node-child: B iD iP ort(in ch a n :[S p ec ifica tio n],

o u tc h a n :[S p e c if ic a t io n]] ,
node-specMethod: B iD iP o rt(in ch a n :[S p ec ifica tio n],

o u tc h a n :[S p e c if ic a tio n]] ,
node-verifyM ethod: B iD iP ort(in ch a n :[S p ec ifica tio n],

o u tch a n :[S p ecifica tion]]
]

193

www.manaraa.com

APPENDIX B. THE TOW ER MODEL 194

port node-parent : BiDiPort[inchan, ou tchan]||
port node-ch ild : B iD iPort[inchan, outchan]I I
port node-specMethod : BiDiPort[inchan, outchan]I I
port node-verifyMethod : BiDiPort[inchan, ou tch an]||
behaviour: nodeBeh: NodeBeh[node-parent, node-ch ild ,

node-specMethod, node-verifyMethod]

>;

define behaviour component type NodeBeh[
node-parent: B iD iP ort(in ch a n :[S p ec ifica tio n],

o u tc h a n :[S p e c if ic a tio n]] ,
node-child: B iD iP ort(in ch an :[S p ec ifica tion],

o u tc h a n :[S p e c if ic a tio n]] ,
node-specMethod: B iD iP ort(in ch a n :[S p ec ifica tio n],

o u tc h a n :[S p e c if ic a tio n]] ,
node-verifyM ethod: B iD iP ort(in ch a n :[S p ec ifica tio n], outchan:[R esult]]

]
{

spec: S p e c if ic a tio n ,
product: Product,
ch ild L ist: C hildL ist,
thisNodeD ef:NodeDef,
thisN odelD : NodelD,
NodeBeh[node-parent, node-ch ild , node-specMethod, node-verifyMethod] =
(

(node-specMethod@outchan<spec> +
node-specMethod@inchan(spec) +
decom pose[entry:In[thisN odeD ef, c h ild L is t , sp e c] ,

e x i t :O u t[ch ild L ist, spec] +
rem oveChild[entry:I n [c h ild L is t , nodelD s], e x i t :O ut[ch ildL ist] +
term in ate[en try:In[thisNodelD , c h ild L is t] , e x i t :O ut[nu ll]]) ,
(NodeBeh[node-parent, node-ch ild , node-specMethod,

node-verifyMethod] + $)
)

>;

www.manaraa.com

APPENDIX B. THE TOW ER MODEL 195

B .3 Specify M ethod
This method allows the changes to the Specification component with the Hdev Node.

! SPEC METHOD COMPONENT
define component type SpecMethod[

specMethod-Node: B iD iP ort(in ch an :[S p ec ifica tion],
ou tch an :[S p ecifica tion]]]

{
port specMethod-node : BiDiPort[inchan, outchan]|I
behaviour: specMethodBeh: SpecMethodBeh[node-specMethod]

>;

define behaviour component type SpecMethodBeh[
specMethod-node: B iD iP ort(in ch an :[S p ec ifica tion],

ou tch an :[S p ecifica tion]]]

spec: S p ec if ica tio n ,
product: Product,
handleSpec: HandleSpec[entry:In [S p e c if ic a tio n], e x i t :O u t[S p ec ifica tio n],
SpecMethodBeh[node-specMethod] =

(node-specMethodOinchan(spec)) .
handleSpec[spec].

node-specMethod@outchan<spec>) .
(SpecMethodBeh[node-specMethod] + $)

>;

B .4 Verify M ethod
! VERIFY METHOD COMPONENT

define component type VerifyMethod[
verMethod-Node: B iD iP ort(in ch an :[S p ec ifica tion],

o u tch an :[S p ecifica tion]]]
{

port verifyMethod-node : BiDiPort[inchan, outchan] j |
behaviour: verifyMethodBeh: VerifyMethodBeh[node-verifyMethod]

>;

www.manaraa.com

APPENDIX B. THE TOW ER MODEL 196

define behaviour component type VerifyMethodBeh[
verifyM ethod-node: B iD iP o rt(in ch a n :[S p ec ifica tio n],

o u tch a n :[S p ec ifica tio n]]]

{
spec: S p e c if ic a t io n ,
r e su lt: R esu lt,
childN odes: ChildNodes,
handleV erify: H andleV erify[entry:In [S p ec if ica tio n , ChildNodes],

e x i t :O ut[R esult],
VerifyMethodBeh[node-specMethod] =

(node-verifyM ethod@ inchan(spec)) .
handleV erify[spec, childNodes, r e s u lt] ,
node-verifyMethod@outchan<spec>) .
(VerifyMethodBeh[node-verifyMethod] + $)

>;

B .5 N od e

The Node is created by composing the HDev component with the SpecifyMethod and
VerifyMethod components.

! !

! COMPOSE

compose NodeArch{

hdevNode: HdevNode I I
specMethod: SpecMethod I|
verifyMethod: VerifyMethod|I
linkNM : B uffB iD i||
linkNV : BuffBiDi

where

attach hdevNode@node-specMethod@outchan to linkNM@putport@inchan
attach hdevNode@node-specMethod@inchan to linkNMQputportOoutchan
attach specMethodOmethod-nodeOoutchan to linkNM@getport@inchan

www.manaraa.com

APPENDIX B. THE TOW ER MODEL 197

attach specMethod®method-node®inchan to linkNM®getport®outchan

attach hdevNode@node-verifyMethod®outchan to linkNV®putport©inchan
attach hdevMode@node-verifyMethod©inchan to linkNV@putport@outchan
attach verifyMethod®method-node@outchan to linkNV®getport©inchan
attach verifyMethod@method-node@inchan to linkNV®getport@outchan

>;

